Unveiling the Effect of Synthetic Atmospheric Humidity on the Performance of FAPbBr3 Nanocrystals and Their PeLEDs

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-12-23 DOI:10.1021/acsphotonics.4c01811
Qinglin Zeng, Jibin Zhang, Xinzhen Ji, Meng Wang, Shuailing Lin, Meng Su, Qianli Liu, Linyuan Lian, Mochen Jia, Xu Chen, Zhuangzhuang Ma, Ying Liu, Yanbing Han, Yongtao Tian, Xin-Jian Li, Zhifeng Shi
{"title":"Unveiling the Effect of Synthetic Atmospheric Humidity on the Performance of FAPbBr3 Nanocrystals and Their PeLEDs","authors":"Qinglin Zeng, Jibin Zhang, Xinzhen Ji, Meng Wang, Shuailing Lin, Meng Su, Qianli Liu, Linyuan Lian, Mochen Jia, Xu Chen, Zhuangzhuang Ma, Ying Liu, Yanbing Han, Yongtao Tian, Xin-Jian Li, Zhifeng Shi","doi":"10.1021/acsphotonics.4c01811","DOIUrl":null,"url":null,"abstract":"The polar solvent of water can disrupt the structure of lead halide perovskite nanocrystals (PeNCs), and its presence is inevitable during the synthesis process. Therefore, it is crucial to understand the impact of synthetic atmospheric humidity on the performance of PeNCs and their electroluminescence. In this study, we first synthesized formamidine lead bromide (FAPbBr<sub>3</sub>) PeNCs at different relative air humidities and explored their optoelectronic properties and electroluminescence. We found that under optimal humidity conditions (40% R.H.), water molecules can reduce the nucleation growth barrier of PeNCs through ligand replacement. This process results in nanocrystals with good crystallinity and fewer defects, thereby reducing defect states and nonradiative recombination. The perovskite light-emitting diodes (PeLEDs) based on these FAPbBr<sub>3</sub> PeNCs exhibit a maximum luminance of 39,000 cd m<sup>–2</sup> and a peak external quantum efficiency of 16.2%, surpassing most reported values in the literature without the use of any additional additives. This study elucidates the role of atmospheric humidity in the growth of PeNCs and introduces the concept of humidity-assisted synthesis, which is crucial for scaling up production in the industry.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"41 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01811","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The polar solvent of water can disrupt the structure of lead halide perovskite nanocrystals (PeNCs), and its presence is inevitable during the synthesis process. Therefore, it is crucial to understand the impact of synthetic atmospheric humidity on the performance of PeNCs and their electroluminescence. In this study, we first synthesized formamidine lead bromide (FAPbBr3) PeNCs at different relative air humidities and explored their optoelectronic properties and electroluminescence. We found that under optimal humidity conditions (40% R.H.), water molecules can reduce the nucleation growth barrier of PeNCs through ligand replacement. This process results in nanocrystals with good crystallinity and fewer defects, thereby reducing defect states and nonradiative recombination. The perovskite light-emitting diodes (PeLEDs) based on these FAPbBr3 PeNCs exhibit a maximum luminance of 39,000 cd m–2 and a peak external quantum efficiency of 16.2%, surpassing most reported values in the literature without the use of any additional additives. This study elucidates the role of atmospheric humidity in the growth of PeNCs and introduces the concept of humidity-assisted synthesis, which is crucial for scaling up production in the industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示合成大气湿度对FAPbBr3纳米晶体及其ped性能的影响
水的极性溶剂会破坏卤化铅钙钛矿纳米晶体的结构,是合成过程中不可避免的存在。因此,了解合成大气湿度对聚苯乙烯及其电致发光性能的影响至关重要。本研究首次在不同相对空气湿度下合成了甲脒型溴化铅(FAPbBr3),并对其光电性能和电致发光性能进行了研究。我们发现,在最佳湿度条件下(40% R.H.),水分子可以通过配体置换降低pnas的成核生长屏障。该工艺得到的纳米晶体结晶度好,缺陷少,从而减少了缺陷状态和非辐射复合。基于这些FAPbBr3 pce的钙钛矿发光二极管(PeLEDs)的最大亮度为39,000 cd m-2,峰值外量子效率为16.2%,在不使用任何额外添加剂的情况下超过了文献中大多数报道的值。本研究阐明了大气湿度在pce生长中的作用,并介绍了湿度辅助合成的概念,这对于扩大工业生产至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Formamidine bromide (FABr)
阿拉丁
N,N-Dimethylformamide (DMF)
阿拉丁
PbBr2
阿拉丁
octylamine (OTAm)
阿拉丁
oleic acid (OA)
阿拉丁
chloroform
阿拉丁
acetonitrile
阿拉丁
poly(9-vinlycarbazole) (PVK)
阿拉丁
Octane (C8H18)
阿拉丁
1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi)
阿拉丁
1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi)
阿拉丁
Octane (C8H18)
阿拉丁
Poly(9-vinylcarbazole)
阿拉丁
Acetonitrile
阿拉丁
Chloroform
阿拉丁
Oleic acid (OA)
阿拉丁
Octylamine (OTAm)
阿拉丁
PbBr2
阿拉丁
N,N-Dimethylformamide (DMF)
阿拉丁
Formamidine bromide (FABr)
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Topologically Protected Edge States in Time Photonic Crystals with Chiral Symmetry High-Efficiency Solar Hybrid Photovoltaic/Thermal System Enabled by Ultrathin Asymmetric Fabry–Perot Cavity Regulation of Additive-Cs+ Interactions for Efficient Cesium Copper Iodide Light-Emitting Diodes Breaking the Size Limit of Room-Temperature Prepared Lead Sulfide Colloidal Quantum Dots for High-Performance Short-Wave Infrared Optoelectronics Segmented SiPM Readout for Cherenkov Time-of-Flight Positron Emission Tomography Detectors Based on Bismuth Germanate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1