FusionBooster: A Unified Image Fusion Boosting Paradigm

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-12-23 DOI:10.1007/s11263-024-02266-6
Chunyang Cheng, Tianyang Xu, Xiao-Jun Wu, Hui Li, Xi Li, Josef Kittler
{"title":"FusionBooster: A Unified Image Fusion Boosting Paradigm","authors":"Chunyang Cheng, Tianyang Xu, Xiao-Jun Wu, Hui Li, Xi Li, Josef Kittler","doi":"10.1007/s11263-024-02266-6","DOIUrl":null,"url":null,"abstract":"<p>In recent years, numerous ideas have emerged for designing a mutually reinforcing mechanism or extra stages for the image fusion task, ignoring the inevitable gaps between different vision tasks and the computational burden. We argue that there is a scope to improve the fusion performance with the help of the FusionBooster, a model specifically designed for fusion tasks. In particular, our booster is based on the divide-and-conquer strategy controlled by an information probe. The booster is composed of three building blocks: the probe units, the booster layer, and the assembling module. Given the result produced by a backbone method, the probe units assess the fused image and divide the results according to their information content. This is instrumental in identifying missing information, as a step to its recovery. The recovery of the degraded components along with the fusion guidance are the role of the booster layer. Lastly, the assembling module is responsible for piecing these advanced components together to deliver the output. We use concise reconstruction loss functions in conjunction with lightweight autoencoder models to formulate the learning task, with marginal computational complexity increase. The experimental results obtained in various fusion missions, as well as downstream detection tasks, consistently demonstrate that the proposed FusionBooster significantly improves the performance. Our code will be publicly available at https://github.com/AWCXV/FusionBooster.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02266-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, numerous ideas have emerged for designing a mutually reinforcing mechanism or extra stages for the image fusion task, ignoring the inevitable gaps between different vision tasks and the computational burden. We argue that there is a scope to improve the fusion performance with the help of the FusionBooster, a model specifically designed for fusion tasks. In particular, our booster is based on the divide-and-conquer strategy controlled by an information probe. The booster is composed of three building blocks: the probe units, the booster layer, and the assembling module. Given the result produced by a backbone method, the probe units assess the fused image and divide the results according to their information content. This is instrumental in identifying missing information, as a step to its recovery. The recovery of the degraded components along with the fusion guidance are the role of the booster layer. Lastly, the assembling module is responsible for piecing these advanced components together to deliver the output. We use concise reconstruction loss functions in conjunction with lightweight autoencoder models to formulate the learning task, with marginal computational complexity increase. The experimental results obtained in various fusion missions, as well as downstream detection tasks, consistently demonstrate that the proposed FusionBooster significantly improves the performance. Our code will be publicly available at https://github.com/AWCXV/FusionBooster.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FusionBooster:一个统一的图像融合增强范例
近年来,出现了许多为图像融合任务设计相互增强机制或额外阶段的想法,忽略了不同视觉任务之间不可避免的差距和计算负担。我们认为,在FusionBooster(一个专门为融合任务设计的模型)的帮助下,有一个改善融合性能的范围。特别是,我们的助推器是基于信息探针控制的分而治之策略。该助推器由三个构件组成:探头单元、助推器层和装配模块。根据骨干方法产生的结果,探针单元对融合后的图像进行评估,并根据其信息含量对结果进行划分。这有助于识别丢失的信息,作为恢复信息的一步。助推层的作用是对降解部件的回收和融合制导。最后,组装模块负责将这些高级组件拼接在一起以提供输出。我们使用简洁的重建损失函数结合轻量级自编码器模型来制定学习任务,边际计算复杂度增加。在各种聚变任务以及下游检测任务中获得的实验结果一致表明,所提出的FusionBooster显著提高了性能。我们的代码将在https://github.com/AWCXV/FusionBooster上公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Sample-Cohesive Pose-Aware Contrastive Facial Representation Learning Learning with Enriched Inductive Biases for Vision-Language Models Image Synthesis Under Limited Data: A Survey and Taxonomy Dual-Space Video Person Re-identification SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1