{"title":"METS: Motion-Encoded Time-Surface for Event-Based High-Speed Pose Tracking","authors":"Ninghui Xu, Lihui Wang, Zhiting Yao, Takayuki Okatani","doi":"10.1007/s11263-025-02379-6","DOIUrl":null,"url":null,"abstract":"<p>We present a novel event-based representation, named Motion-Encoded Time-Surface (METS), and how it can be used to address the challenge of pose tracking under high-speed scenarios with an event camera. The core concept is dynamically encoding the pixel-wise decay rate of the Time-Surface to account for localized spatio-temporal scene dynamics captured by events, rendering remarkable adaptability with respect to motion dynamics. The consistency between METS and the scene in highly dynamic conditions establishes a reliable foundation for robust pose estimation. Building upon this, we employ a semi-dense 3D-2D alignment pipeline to fully unlock the potential of the event camera for high-speed tracking applications. Given the intrinsic characteristics of METS, we further develop specialized lightweight operations aimed at minimizing the per-event computational cost. The proposed algorithm is successfully evaluated on public datasets and our high-speed motion datasets covering various scenes and motion complexities. It shows that our approach outperforms state-of-the-art pose tracking methods, especially in highly dynamic scenarios, and is capable of tracking accurately under incredibly fast motions that are inaccessible for other event- or frame-based counterparts. Due to its simplicity, our algorithm exhibits outstanding practicality, running at over 70 Hz on a standard CPU.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"44 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02379-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel event-based representation, named Motion-Encoded Time-Surface (METS), and how it can be used to address the challenge of pose tracking under high-speed scenarios with an event camera. The core concept is dynamically encoding the pixel-wise decay rate of the Time-Surface to account for localized spatio-temporal scene dynamics captured by events, rendering remarkable adaptability with respect to motion dynamics. The consistency between METS and the scene in highly dynamic conditions establishes a reliable foundation for robust pose estimation. Building upon this, we employ a semi-dense 3D-2D alignment pipeline to fully unlock the potential of the event camera for high-speed tracking applications. Given the intrinsic characteristics of METS, we further develop specialized lightweight operations aimed at minimizing the per-event computational cost. The proposed algorithm is successfully evaluated on public datasets and our high-speed motion datasets covering various scenes and motion complexities. It shows that our approach outperforms state-of-the-art pose tracking methods, especially in highly dynamic scenarios, and is capable of tracking accurately under incredibly fast motions that are inaccessible for other event- or frame-based counterparts. Due to its simplicity, our algorithm exhibits outstanding practicality, running at over 70 Hz on a standard CPU.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.