High‐speed continuous flow calorimetry in a nonadiabatic environment

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-12-23 DOI:10.1002/aic.18712
Yiming Xu, Fujun Li, Yun Zou, Jinzhe Cao, Shengyang Tao
{"title":"High‐speed continuous flow calorimetry in a nonadiabatic environment","authors":"Yiming Xu, Fujun Li, Yun Zou, Jinzhe Cao, Shengyang Tao","doi":"10.1002/aic.18712","DOIUrl":null,"url":null,"abstract":"Many rapid and strongly exothermic reactions have transitioned to continuous flow reactors for safety considerations. However, data from batch calorimeters often fall short in guiding these processes due to substantial differences in transfer characteristics, and the adiabatic components of calorimeters significantly escalate equipment costs and dimensions. Inspired by the human body's thermoregulatory mechanism, we developed the Dynamic Tracking Reference Continuous Calorimeter (DTRCC). This novel device enables rapid and precise calorimetry in continuous‐flow reactions under nonadiabatic conditions and variable external temperatures. The measurement time can be reduced to 110 s with a low difference of 0.5%. The DTRCC proves versatile across various reaction types, including nitrification and photoreaction. It can also determine solutions' heat capacity and reactions' selectivity according to calorimetry. Implementing the DTRCC provides crucial data that enhance the design and optimization of continuous flow reactors, significantly boosting chemical process safety and efficiency.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18712","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many rapid and strongly exothermic reactions have transitioned to continuous flow reactors for safety considerations. However, data from batch calorimeters often fall short in guiding these processes due to substantial differences in transfer characteristics, and the adiabatic components of calorimeters significantly escalate equipment costs and dimensions. Inspired by the human body's thermoregulatory mechanism, we developed the Dynamic Tracking Reference Continuous Calorimeter (DTRCC). This novel device enables rapid and precise calorimetry in continuous‐flow reactions under nonadiabatic conditions and variable external temperatures. The measurement time can be reduced to 110 s with a low difference of 0.5%. The DTRCC proves versatile across various reaction types, including nitrification and photoreaction. It can also determine solutions' heat capacity and reactions' selectivity according to calorimetry. Implementing the DTRCC provides crucial data that enhance the design and optimization of continuous flow reactors, significantly boosting chemical process safety and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非绝热环境下的高速连续流量热法
出于安全考虑,许多快速而强烈的放热反应已过渡到连续流反应器。然而,由于传递特性的巨大差异,来自批量量热计的数据通常无法指导这些过程,并且量热计的绝热组件显着增加了设备成本和尺寸。受人体体温调节机制的启发,我们开发了动态跟踪参考连续量热计(DTRCC)。这种新颖的装置可以在非绝热条件下和可变外部温度下的连续流反应中进行快速和精确的量热测定。测量时间可缩短至110 s,误差低至0.5%。DTRCC在各种反应类型中被证明是通用的,包括硝化和光反应。还可以根据量热法测定溶液的热容和反应的选择性。实施DTRCC提供了重要的数据,加强了连续流反应器的设计和优化,显著提高了化工过程的安全性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Experimental and theoretical study on the gas holdup feature in a 1.5-m tall alkaline water electrolytic cell A novel approach to intensify fluid mixing by introducing a “pre-cavitation” stage in an ultrasonic microreactor Concentration distribution and mass transfer process intensification of single droplet in swirl flow field Tailoring bubble size through acoustic-assisted microbubble generation Predicting the solvent effect on crystal morphology via quantum mechanical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1