Multiple Polarization States in Hf1−xZrxO2 Thin Films by Ferroelectric and Antiferroelectric Coupling

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-23 DOI:10.1002/adma.202411463
Binjian Zeng, Lanyan Yin, Ruiping Liu, Changfan Ju, Qinghua Zhang, Zhibin Yang, Shuaizhi Zheng, Qiangxiang Peng, Qiong Yang, Yichun Zhou, Min Liao
{"title":"Multiple Polarization States in Hf1−xZrxO2 Thin Films by Ferroelectric and Antiferroelectric Coupling","authors":"Binjian Zeng,&nbsp;Lanyan Yin,&nbsp;Ruiping Liu,&nbsp;Changfan Ju,&nbsp;Qinghua Zhang,&nbsp;Zhibin Yang,&nbsp;Shuaizhi Zheng,&nbsp;Qiangxiang Peng,&nbsp;Qiong Yang,&nbsp;Yichun Zhou,&nbsp;Min Liao","doi":"10.1002/adma.202411463","DOIUrl":null,"url":null,"abstract":"<p>HfO<sub>2</sub>-based multi-bit ferroelectric memory combines non-volatility, speed, and energy efficiency, rendering it a promising technology for massive data storage and processing. However, some challenges remain, notably polarization variation, high operation voltage, and poor endurance performance. Here we show Hf<sub>1−</sub><i><sub>x</sub></i>Zr<i><sub>x</sub></i>O<sub>2</sub> (<i>x </i>= 0.65 to 0.75) thin films grown through sequential atomic layer deposition (ALD) of HfO<sub>2</sub> and ZrO<sub>2</sub> exhibiting three-step domain switching characteristic in the form of triple-peak coercive electric field (<i>E</i><sub>C</sub>) distribution. This long-sought behavior shows nearly no changes even at up to 125 °C and after 1 × 10<sup>8</sup> electric field cycling. By combining the electrical characterizations and integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM), we reveal that the triple-peak <i>E</i><sub>C</sub> distribution is driven by the coupling of ferroelectric switching and reversible antiferroelectric–ferroelectric transition. We further demonstrate the 3-bit per cell operation of the Hf<sub>1−</sub><i><sub>x</sub></i>Zr<i><sub>x</sub></i>O<sub>2</sub> capacitors with excellent device-to-device variation and long data retention, by the full switching of individual peaks in the triple-peak <i>E</i><sub>C</sub>. The work represents a significant step in implementing reliable non-volatile multi-state ferroelectric devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 6","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202411463","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

HfO2-based multi-bit ferroelectric memory combines non-volatility, speed, and energy efficiency, rendering it a promising technology for massive data storage and processing. However, some challenges remain, notably polarization variation, high operation voltage, and poor endurance performance. Here we show Hf1−xZrxO2 (x = 0.65 to 0.75) thin films grown through sequential atomic layer deposition (ALD) of HfO2 and ZrO2 exhibiting three-step domain switching characteristic in the form of triple-peak coercive electric field (EC) distribution. This long-sought behavior shows nearly no changes even at up to 125 °C and after 1 × 108 electric field cycling. By combining the electrical characterizations and integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM), we reveal that the triple-peak EC distribution is driven by the coupling of ferroelectric switching and reversible antiferroelectric–ferroelectric transition. We further demonstrate the 3-bit per cell operation of the Hf1−xZrxO2 capacitors with excellent device-to-device variation and long data retention, by the full switching of individual peaks in the triple-peak EC. The work represents a significant step in implementing reliable non-volatile multi-state ferroelectric devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁电与反铁电耦合在Hf1−xZrxO2薄膜中的多极化态
基于HfO2的多比特铁电存储器结合了非易失性、速度和能源效率,使其成为一种有前途的大规模数据存储和处理技术。然而,仍然存在一些挑战,特别是极化变化,高工作电压和耐久性差。在这里,我们展示了通过HfO2和ZrO2的顺序原子层沉积(ALD)生长的Hf1−xZrxO2 (x = 0.65至0.75)薄膜,以三峰矫顽力电场(EC)分布的形式表现出三步畴开关特性。即使在125°C和1 × 108次电场循环后,这种长期寻找的行为几乎没有变化。通过结合电特性和集成差分相对比扫描透射电子显微镜(iDPC - STEM),我们发现三峰EC分布是由铁电开关和可逆反铁电-铁电转变耦合驱动的。我们进一步证明了Hf1−xZrxO2电容器具有优异的器件间变化和长时间数据保留的每单元3位操作,通过完全切换三峰EC中的单个峰。这项工作代表了实现可靠的非易失性多态铁电器件的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Recycling and Upcycling of Polyurethane Thermosets: The Second Life of Polymers Earthing‐Inspired Nanoparticle‐Filled Nanosheet Arrays for Robust and Efficient Electrochemical Gas Evolution Catalysis Peptide‐Induced Ferroelectricity in Charge‐Transfer Supramolecular Materials Anisotropic Biomass Microfluidics via Directed Moisture Transport and Enhanced Water‐Binding Capacity for High‐Yield Solar‐driven Atmospheric Water Harvesting CdTe Quantum Dots Encapsulated on Perovskite Grains Enable Highly Efficient and Stable Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1