Direct Crystallographic Observation of Obvious Structural Deformation in a Lead Halide Framework Induced by Host–Guest Interactions

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-12-23 DOI:10.1002/adfm.202421361
Xinfeng Chen, Quanzheng Deng, Shi Wang, Yichong Chen, Yukong Li, Wenyan Dan, Yang Liu, Yi‐nan Wu, Lu Han, Honghan Fei
{"title":"Direct Crystallographic Observation of Obvious Structural Deformation in a Lead Halide Framework Induced by Host–Guest Interactions","authors":"Xinfeng Chen, Quanzheng Deng, Shi Wang, Yichong Chen, Yukong Li, Wenyan Dan, Yang Liu, Yi‐nan Wu, Lu Han, Honghan Fei","doi":"10.1002/adfm.202421361","DOIUrl":null,"url":null,"abstract":"Host–guest chemistry represents a prominent field within many inorganic solids, where the host entity typically retains its original lattice. The hybrid composition and soft lattice of organolead halides make their structural changes and optical properties highly sensitive to host–guest interactions, distinguishing them from conventional inorganic solids. Herein, 3D electron diffraction tomography, an advanced crystallographic technique, is employed to observe the pronounced structural deformation of the lead bromide layers upon the cleavage of coordinated solvent molecules, which renders a coordination unsaturated side for the activated Pb<jats:sup>2+</jats:sup> sites. Moreover, the structural transmutation induced by this process leads to a significant enhancement and red‐shift in self‐trapped emission, which is analyzed in‐depth using a variety of photophysical studies. More importantly, the activated Pb<jats:sup>2+</jats:sup> centers are able to re‐coordinate with the environmental <jats:italic>N</jats:italic>,<jats:italic>N</jats:italic>‐dimethylformamide vapors in a selective and reversible manner, highlighting high application potentials in multilevel information encryption and anti‐counterfeiting.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"12 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421361","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Host–guest chemistry represents a prominent field within many inorganic solids, where the host entity typically retains its original lattice. The hybrid composition and soft lattice of organolead halides make their structural changes and optical properties highly sensitive to host–guest interactions, distinguishing them from conventional inorganic solids. Herein, 3D electron diffraction tomography, an advanced crystallographic technique, is employed to observe the pronounced structural deformation of the lead bromide layers upon the cleavage of coordinated solvent molecules, which renders a coordination unsaturated side for the activated Pb2+ sites. Moreover, the structural transmutation induced by this process leads to a significant enhancement and red‐shift in self‐trapped emission, which is analyzed in‐depth using a variety of photophysical studies. More importantly, the activated Pb2+ centers are able to re‐coordinate with the environmental N,N‐dimethylformamide vapors in a selective and reversible manner, highlighting high application potentials in multilevel information encryption and anti‐counterfeiting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Enzymatic Redox‐Mediated Fabrication of Textiles with Multimode Synergistic Antimicrobial Activity through Embedding Nanosilver in Dynamic Polydisulfide Networks Metal Ion “Adjuvant” [Si─O4] Tetrahedron Addresses Coagulation Interruption and Promotes Multi‐Tissue Regeneration via Smart Ionic Capturing and Cell Membrane Transporting Nanozyme‐Engineered Hyaluronic Acid Adhesives Loading Platelet‐Rich Plasma for Multilayered Osteoarthritis Treatment with Pain‐Relief Effect Polymer Brush Growth by Surface‐Initiated Ring‐Opening Polymerization from a Cross‐Linked Polymer Thin Film Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1