{"title":"Unleashing the solar-driven overall water-splitting potential for green ZnIn2S4","authors":"Wei-Kean Chong, Boon-Junn Ng, Xin Ying Kong, Jingxiang Low, Hing Wah Lee, Lling-Lling Tan, Siang-Piao Chai","doi":"10.1016/j.checat.2024.101227","DOIUrl":null,"url":null,"abstract":"Sustainable hydrogen production through the photoconversion of water represents one of the leading-edge approaches for generating green energy to achieve carbon neutrality. However, most of the outstanding photocatalytic systems capable of effectively splitting pure water rely on expensive noble-metal co-catalysts. In this work, we incorporate low-cost Ni-hybrid co-catalysts onto sulfur-vacant hollow green ZnIn<sub>2</sub>S<sub>4</sub> (NNOgZIS) through the co-deposition of Ni and NiO<sub><em>x</em></sub> onto the reductive and oxidative sites from self-generative electron-hole pairs. NNOgZIS demonstrates exceptional solar-driven pure water splitting and achieves a solar-to-hydrogen conversion efficiency exceeding that of most noble-metal-loaded single-sulfide-based systems. Additionally, it facilitates the photo-oxidative production of high-energy hydrogen peroxide. The diverse applications of NNOgZIS are positively presented through simulated seawater splitting and coupled oxidative reactions as well as a demonstration of workability in a film-based system. This study presents the potential of integrating low-cost metals into augmenting photocatalytic efficiency, establishing a foundation for cost-effective and sustainable photocatalytic-fuel-forming innovation.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"12 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable hydrogen production through the photoconversion of water represents one of the leading-edge approaches for generating green energy to achieve carbon neutrality. However, most of the outstanding photocatalytic systems capable of effectively splitting pure water rely on expensive noble-metal co-catalysts. In this work, we incorporate low-cost Ni-hybrid co-catalysts onto sulfur-vacant hollow green ZnIn2S4 (NNOgZIS) through the co-deposition of Ni and NiOx onto the reductive and oxidative sites from self-generative electron-hole pairs. NNOgZIS demonstrates exceptional solar-driven pure water splitting and achieves a solar-to-hydrogen conversion efficiency exceeding that of most noble-metal-loaded single-sulfide-based systems. Additionally, it facilitates the photo-oxidative production of high-energy hydrogen peroxide. The diverse applications of NNOgZIS are positively presented through simulated seawater splitting and coupled oxidative reactions as well as a demonstration of workability in a film-based system. This study presents the potential of integrating low-cost metals into augmenting photocatalytic efficiency, establishing a foundation for cost-effective and sustainable photocatalytic-fuel-forming innovation.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.