Unleashing the solar-driven overall water-splitting potential for green ZnIn2S4

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-12-23 DOI:10.1016/j.checat.2024.101227
Wei-Kean Chong, Boon-Junn Ng, Xin Ying Kong, Jingxiang Low, Hing Wah Lee, Lling-Lling Tan, Siang-Piao Chai
{"title":"Unleashing the solar-driven overall water-splitting potential for green ZnIn2S4","authors":"Wei-Kean Chong, Boon-Junn Ng, Xin Ying Kong, Jingxiang Low, Hing Wah Lee, Lling-Lling Tan, Siang-Piao Chai","doi":"10.1016/j.checat.2024.101227","DOIUrl":null,"url":null,"abstract":"Sustainable hydrogen production through the photoconversion of water represents one of the leading-edge approaches for generating green energy to achieve carbon neutrality. However, most of the outstanding photocatalytic systems capable of effectively splitting pure water rely on expensive noble-metal co-catalysts. In this work, we incorporate low-cost Ni-hybrid co-catalysts onto sulfur-vacant hollow green ZnIn<sub>2</sub>S<sub>4</sub> (NNOgZIS) through the co-deposition of Ni and NiO<sub><em>x</em></sub> onto the reductive and oxidative sites from self-generative electron-hole pairs. NNOgZIS demonstrates exceptional solar-driven pure water splitting and achieves a solar-to-hydrogen conversion efficiency exceeding that of most noble-metal-loaded single-sulfide-based systems. Additionally, it facilitates the photo-oxidative production of high-energy hydrogen peroxide. The diverse applications of NNOgZIS are positively presented through simulated seawater splitting and coupled oxidative reactions as well as a demonstration of workability in a film-based system. This study presents the potential of integrating low-cost metals into augmenting photocatalytic efficiency, establishing a foundation for cost-effective and sustainable photocatalytic-fuel-forming innovation.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"12 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable hydrogen production through the photoconversion of water represents one of the leading-edge approaches for generating green energy to achieve carbon neutrality. However, most of the outstanding photocatalytic systems capable of effectively splitting pure water rely on expensive noble-metal co-catalysts. In this work, we incorporate low-cost Ni-hybrid co-catalysts onto sulfur-vacant hollow green ZnIn2S4 (NNOgZIS) through the co-deposition of Ni and NiOx onto the reductive and oxidative sites from self-generative electron-hole pairs. NNOgZIS demonstrates exceptional solar-driven pure water splitting and achieves a solar-to-hydrogen conversion efficiency exceeding that of most noble-metal-loaded single-sulfide-based systems. Additionally, it facilitates the photo-oxidative production of high-energy hydrogen peroxide. The diverse applications of NNOgZIS are positively presented through simulated seawater splitting and coupled oxidative reactions as well as a demonstration of workability in a film-based system. This study presents the potential of integrating low-cost metals into augmenting photocatalytic efficiency, establishing a foundation for cost-effective and sustainable photocatalytic-fuel-forming innovation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Unleashing the solar-driven overall water-splitting potential for green ZnIn2S4 Reverse effect of metal-support interaction on platinum and iridium catalysts in ammonia selective oxidation Visualizing active species in CO2 electroreduction Key role of precatalyst composition and iron impurities in oxygen evolution reaction Enzymatic azide synthesis by ATP-dependent synthetase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1