Amorphous High-entropy Phosphide Nanosheets With Multi-atom Catalytic Sites for Efficient Oxygen Evolution

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-23 DOI:10.1002/adma.202410295
Xiumin Li, Zhengkun Xie, Soumyabrata Roy, Longqing Gao, Jie Liu, Bing Zhao, Ran Wei, Bijun Tang, Hongyan Wang, Pulickel Ajayan, Keyong Tang
{"title":"Amorphous High-entropy Phosphide Nanosheets With Multi-atom Catalytic Sites for Efficient Oxygen Evolution","authors":"Xiumin Li, Zhengkun Xie, Soumyabrata Roy, Longqing Gao, Jie Liu, Bing Zhao, Ran Wei, Bijun Tang, Hongyan Wang, Pulickel Ajayan, Keyong Tang","doi":"10.1002/adma.202410295","DOIUrl":null,"url":null,"abstract":"The alkaline oxygen evolution reaction (OER) mainly encompasses four elementary reactions, involving intermediates such as HO*, O*, and HOO*. Balancing the Gibbs free energies of these intermediates at a single active site is a challenging task. In this work, a high-entropy metal-organic framework incorporating Fe, Ni, Co, Cu, and Y metal elements is synthesized using an electrodeposition method, which then serves as a template for preparing a high-entropy phosphide/carbon (FeCoNiCuYP/C) composite. Notably, the obtained composite exhibits an amorphous structure with multiple catalytically active sites. Combined theoretical calculations and experimental measurements reveal the critical roles of Co/Ni and Fe atoms in tuning the electronic structure of FeCoNiCuYP and optimizing the binding strength of intermediates. Furthermore, Fe and Ni/Co sites prefer to stabilize the HO* and HOO* intermediates respectively, conducive to breaking their scaling relation of Gibbs free energy during OER. Owing to its fine-tuned composition and the synergistic effect of multiple active sites, the FeCoNiCuYP/C electrocatalyst demonstrates superior OER performance in alkaline solutions, requiring a mere 316 mV overpotential to yield 100 mA cm<sup>−2</sup> current density with excellent stability. This work provides an innovative route to design efficient high-entropy electrocatalysts, holding significant promise for cutting-edge electrocatalytic applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"39 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410295","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The alkaline oxygen evolution reaction (OER) mainly encompasses four elementary reactions, involving intermediates such as HO*, O*, and HOO*. Balancing the Gibbs free energies of these intermediates at a single active site is a challenging task. In this work, a high-entropy metal-organic framework incorporating Fe, Ni, Co, Cu, and Y metal elements is synthesized using an electrodeposition method, which then serves as a template for preparing a high-entropy phosphide/carbon (FeCoNiCuYP/C) composite. Notably, the obtained composite exhibits an amorphous structure with multiple catalytically active sites. Combined theoretical calculations and experimental measurements reveal the critical roles of Co/Ni and Fe atoms in tuning the electronic structure of FeCoNiCuYP and optimizing the binding strength of intermediates. Furthermore, Fe and Ni/Co sites prefer to stabilize the HO* and HOO* intermediates respectively, conducive to breaking their scaling relation of Gibbs free energy during OER. Owing to its fine-tuned composition and the synergistic effect of multiple active sites, the FeCoNiCuYP/C electrocatalyst demonstrates superior OER performance in alkaline solutions, requiring a mere 316 mV overpotential to yield 100 mA cm−2 current density with excellent stability. This work provides an innovative route to design efficient high-entropy electrocatalysts, holding significant promise for cutting-edge electrocatalytic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Colloid‐Forming Prodrug‐Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection Buried Interface Modulation Using Self‐Assembled Monolayer and Ionic Liquid Hybrids for High‐Performance Perovskite and Perovskite/CuInGaSe2 Tandem Photovoltaics Fe/Mo‐Based Lipid Peroxidation Nanoamplifier Combined with Adenosine Immunometabolism Regulation to Augment Anti‐Breast Cancer Immunity Constructing the Dirac Electronic Behavior Database of Under‐Stress Transition Metal Dichalcogenides for Broad Applications Reversible Nanocomposite by Programming Amorphous Polymer Conformation Under Nanoconfinement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1