{"title":"Amorphous High-entropy Phosphide Nanosheets With Multi-atom Catalytic Sites for Efficient Oxygen Evolution","authors":"Xiumin Li, Zhengkun Xie, Soumyabrata Roy, Longqing Gao, Jie Liu, Bing Zhao, Ran Wei, Bijun Tang, Hongyan Wang, Pulickel Ajayan, Keyong Tang","doi":"10.1002/adma.202410295","DOIUrl":null,"url":null,"abstract":"The alkaline oxygen evolution reaction (OER) mainly encompasses four elementary reactions, involving intermediates such as HO*, O*, and HOO*. Balancing the Gibbs free energies of these intermediates at a single active site is a challenging task. In this work, a high-entropy metal-organic framework incorporating Fe, Ni, Co, Cu, and Y metal elements is synthesized using an electrodeposition method, which then serves as a template for preparing a high-entropy phosphide/carbon (FeCoNiCuYP/C) composite. Notably, the obtained composite exhibits an amorphous structure with multiple catalytically active sites. Combined theoretical calculations and experimental measurements reveal the critical roles of Co/Ni and Fe atoms in tuning the electronic structure of FeCoNiCuYP and optimizing the binding strength of intermediates. Furthermore, Fe and Ni/Co sites prefer to stabilize the HO* and HOO* intermediates respectively, conducive to breaking their scaling relation of Gibbs free energy during OER. Owing to its fine-tuned composition and the synergistic effect of multiple active sites, the FeCoNiCuYP/C electrocatalyst demonstrates superior OER performance in alkaline solutions, requiring a mere 316 mV overpotential to yield 100 mA cm<sup>−2</sup> current density with excellent stability. This work provides an innovative route to design efficient high-entropy electrocatalysts, holding significant promise for cutting-edge electrocatalytic applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"39 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410295","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The alkaline oxygen evolution reaction (OER) mainly encompasses four elementary reactions, involving intermediates such as HO*, O*, and HOO*. Balancing the Gibbs free energies of these intermediates at a single active site is a challenging task. In this work, a high-entropy metal-organic framework incorporating Fe, Ni, Co, Cu, and Y metal elements is synthesized using an electrodeposition method, which then serves as a template for preparing a high-entropy phosphide/carbon (FeCoNiCuYP/C) composite. Notably, the obtained composite exhibits an amorphous structure with multiple catalytically active sites. Combined theoretical calculations and experimental measurements reveal the critical roles of Co/Ni and Fe atoms in tuning the electronic structure of FeCoNiCuYP and optimizing the binding strength of intermediates. Furthermore, Fe and Ni/Co sites prefer to stabilize the HO* and HOO* intermediates respectively, conducive to breaking their scaling relation of Gibbs free energy during OER. Owing to its fine-tuned composition and the synergistic effect of multiple active sites, the FeCoNiCuYP/C electrocatalyst demonstrates superior OER performance in alkaline solutions, requiring a mere 316 mV overpotential to yield 100 mA cm−2 current density with excellent stability. This work provides an innovative route to design efficient high-entropy electrocatalysts, holding significant promise for cutting-edge electrocatalytic applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.