{"title":"Stabilizing Electron Transport of 2D Materials","authors":"Jinbo He, Wenting Wang, Jinjian Yan, Cheng Han, Yue Zheng, Tao Xue, Jiannan Qi, Yongxu Hu, Xiaosong Chen, Yinan Huang, Liqian Yuan, Zhongwu Wang, Liqiang Li, Wenping Hu","doi":"10.1002/adma.202411941","DOIUrl":null,"url":null,"abstract":"2D materials are promising candidates for beyond-Si electronic devices. However, their stability is a key bottleneck in their industrial applications. The instability of 2D materials is mainly attributed to their intrinsic susceptibility to O<sub>2</sub> and H<sub>2</sub>O—particularly to reactive oxygen species (ROS), which have strong oxidizing properties. Inspired by the antioxidant effect of vitamin C (VC) in organisms, a strategy based on the use of VC to stabilize electron transport in 2D materials is developed, which significantly improves the performance and stability of these materials and devices. The mobility is increased by more than an order of magnitude, and excellent performance of the device is maintained in air for >327 days, which is the best reported stability for MoS<sub>2</sub> field-effect transistors to date. VC scavenges existing ROS via oxidation reactions and inhibits the generation of ROS by shielding excitons from oxygen quenching, which provides 2D materials lasting protection from electron trapping and oxidative damage, stabilizing electron transport. This approach, which is based on the simple utilization of readily available VC, has considerable potential for large-scale applications in the 2D material electronics industry.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"61 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
2D materials are promising candidates for beyond-Si electronic devices. However, their stability is a key bottleneck in their industrial applications. The instability of 2D materials is mainly attributed to their intrinsic susceptibility to O2 and H2O—particularly to reactive oxygen species (ROS), which have strong oxidizing properties. Inspired by the antioxidant effect of vitamin C (VC) in organisms, a strategy based on the use of VC to stabilize electron transport in 2D materials is developed, which significantly improves the performance and stability of these materials and devices. The mobility is increased by more than an order of magnitude, and excellent performance of the device is maintained in air for >327 days, which is the best reported stability for MoS2 field-effect transistors to date. VC scavenges existing ROS via oxidation reactions and inhibits the generation of ROS by shielding excitons from oxygen quenching, which provides 2D materials lasting protection from electron trapping and oxidative damage, stabilizing electron transport. This approach, which is based on the simple utilization of readily available VC, has considerable potential for large-scale applications in the 2D material electronics industry.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.