High-Entropy Alloy Nanoflower Array Electrodes with Optimizable Reaction Pathways for Low-Voltage Hydrogen Production at Industrial-Grade Current Density

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-23 DOI:10.1002/adma.202416200
Shaobo Li, Yuying Hou, Guang Feng, Qichang Li, Hang Zhai, Qingfeng Hua, Riming Hu, Ming Xu, Chengxi Zhang, Zhiqi Huang, Dingguo Xia
{"title":"High-Entropy Alloy Nanoflower Array Electrodes with Optimizable Reaction Pathways for Low-Voltage Hydrogen Production at Industrial-Grade Current Density","authors":"Shaobo Li,&nbsp;Yuying Hou,&nbsp;Guang Feng,&nbsp;Qichang Li,&nbsp;Hang Zhai,&nbsp;Qingfeng Hua,&nbsp;Riming Hu,&nbsp;Ming Xu,&nbsp;Chengxi Zhang,&nbsp;Zhiqi Huang,&nbsp;Dingguo Xia","doi":"10.1002/adma.202416200","DOIUrl":null,"url":null,"abstract":"<p>Developing sufficiently effective non-precious metal catalysts for large-current-density hydrogen production is highly significant but challenging, especially in low-voltage hydrogen production systems. Here, we innovatively report high-entropy alloy nanoflower array (HEANFA) electrodes with optimizable reaction pathways for hydrazine oxidation-assisted hydrogen production at industrial-grade current densities. Atomic-resolution structural analyses confirm the single-phase solid-solution structure of HEANFA. The HEANFA electrodes exhibit the top-level electrocatalytic performance for both the alkaline hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR). Furthermore, the hydrazine oxidation-assisted splitting (OHzS) system assembled with HEANFA as both anode and cathode exhibits a record-breaking performance for hydrogen production. It achieves ultralow working voltages of 0.003, 0.081, 0.260, 0.376, and 0.646 V for current densities of 10, 100, 500, 1 000, and 2 000 mA cm<sup>−2</sup>, respectively, and remarkable stability for 300 h, significantly outperforming those of previously reported OHzS systems and other chemicals-assisted hydrogen production systems. Theoretical calculations reveal that extraordinary performance of HEANFA for OHzS is attributed to its abundant high-activity sites and optimizable reaction pathways in HER and HzOR. In particular, HEANFA enables intelligent migration of key intermediates during HzOR, thereby optimizing the reaction pathways and creating high-activity sites, ultimately endowing the extraordinary performance for OHzS.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 7","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202416200","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing sufficiently effective non-precious metal catalysts for large-current-density hydrogen production is highly significant but challenging, especially in low-voltage hydrogen production systems. Here, we innovatively report high-entropy alloy nanoflower array (HEANFA) electrodes with optimizable reaction pathways for hydrazine oxidation-assisted hydrogen production at industrial-grade current densities. Atomic-resolution structural analyses confirm the single-phase solid-solution structure of HEANFA. The HEANFA electrodes exhibit the top-level electrocatalytic performance for both the alkaline hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR). Furthermore, the hydrazine oxidation-assisted splitting (OHzS) system assembled with HEANFA as both anode and cathode exhibits a record-breaking performance for hydrogen production. It achieves ultralow working voltages of 0.003, 0.081, 0.260, 0.376, and 0.646 V for current densities of 10, 100, 500, 1 000, and 2 000 mA cm−2, respectively, and remarkable stability for 300 h, significantly outperforming those of previously reported OHzS systems and other chemicals-assisted hydrogen production systems. Theoretical calculations reveal that extraordinary performance of HEANFA for OHzS is attributed to its abundant high-activity sites and optimizable reaction pathways in HER and HzOR. In particular, HEANFA enables intelligent migration of key intermediates during HzOR, thereby optimizing the reaction pathways and creating high-activity sites, ultimately endowing the extraordinary performance for OHzS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可优化反应途径的高熵合金纳米花阵列电极,用于工业级电流密度下的低压制氢
开发足够有效的非贵金属催化剂用于大电流密度制氢非常重要,但具有挑战性,特别是在低压制氢系统中。在这里,我们创新地报道了高熵合金纳米花阵列(HEANFA)电极,该电极具有可优化的反应途径,用于在工业级电流密度下肼氧化辅助制氢。原子分辨结构分析证实了HEANFA的单相固溶结构。HEANFA电极在碱性析氢反应(HER)和肼氧化反应(HzOR)中均表现出顶级的电催化性能。此外,以HEANFA作为阳极和阴极的肼氧化辅助分裂(OHzS)系统在制氢方面表现出创纪录的性能。在电流密度为10、100、500、1 000和2 000 mA cm−2的情况下,该系统分别实现了0.003、0.081、0.260、0.376和0.646 V的超低工作电压,并在300小时内具有出色的稳定性,显著优于先前报道的OHzS系统和其他化学辅助制氢系统。理论计算表明,HEANFA对OHzS的特殊性能归因于其在HER和HzOR中丰富的高活性位点和优化的反应途径。特别是HEANFA能够在HzOR过程中实现关键中间体的智能迁移,从而优化反应途径,创造高活性位点,最终赋予OHzS非凡的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Spin‐Selective Anti‐Perovskite Enables Breakthrough Nitrate‐to‐Ammonia Electrocatalysis Observation of Topological Chirality Switching Induced Freezing of a Skyrmion Crystal (Adv. Mater. 9/2026) Emergent Freestanding Complex Oxide Membranes for Multifunctional Applications LPS‐Binding Hydrogel for TLR4‐Mediated Microbiota‐Immune Modulation (Adv. Mater. 9/2026) Modular Opto‐Magnetic Oscillators: Harnessing Light to Drive Versatile Materials and Functionalities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1