Polymer Films' Residual Stress Attenuation from the Supramolecular Complexation with Ultra-Small Nanoparticles for High Resolution Nanoimprint Lithography
{"title":"Polymer Films' Residual Stress Attenuation from the Supramolecular Complexation with Ultra-Small Nanoparticles for High Resolution Nanoimprint Lithography","authors":"Jiadong Chen, Shenglin Yao, Bin Wang, Qiang Yu, Binghui Xue, Panchao Yin","doi":"10.1002/anie.202416759","DOIUrl":null,"url":null,"abstract":"Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complexed with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting. Meanwhile, the PTAs serve as supramolecular crosslinkers for the increased modulus of the films (ca. 2 GPa), providing promising dimensional stability required for high-resolution NIL. Simple casting the aqueous blend on a master mold successfully gives a residual stress-free film with sub-2 nm resolution at wafer scale (> 100 cm2). The mild processing at ambient condition permits broad NIL applications to diverse substrates, e.g., integrated circuit chips, compact disc, PET nano grating and even delicate bio-surfaces.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"2 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416759","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complexed with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting. Meanwhile, the PTAs serve as supramolecular crosslinkers for the increased modulus of the films (ca. 2 GPa), providing promising dimensional stability required for high-resolution NIL. Simple casting the aqueous blend on a master mold successfully gives a residual stress-free film with sub-2 nm resolution at wafer scale (> 100 cm2). The mild processing at ambient condition permits broad NIL applications to diverse substrates, e.g., integrated circuit chips, compact disc, PET nano grating and even delicate bio-surfaces.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.