The bHLH transcription factor gene EGL3 accounts for the natural diversity in Arabidopsis fruit trichome pattern and morphology

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-12-22 DOI:10.1093/plphys/kiae673
Belén Méndez-Vigo, Noelia Arteaga, Alba Murillo-Sánchez, Sonia Alba, Carlos Alonso-Blanco
{"title":"The bHLH transcription factor gene EGL3 accounts for the natural diversity in Arabidopsis fruit trichome pattern and morphology","authors":"Belén Méndez-Vigo, Noelia Arteaga, Alba Murillo-Sánchez, Sonia Alba, Carlos Alonso-Blanco","doi":"10.1093/plphys/kiae673","DOIUrl":null,"url":null,"abstract":"The number and distribution of trichomes, i.e., the trichome pattern, in different plant organs shows a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors. The genetic and molecular mechanisms accounting for the evolution of trichome patterns have just begun to be elucidated. In this study, we aimed to identify and characterize MALAMBRUNO 1 (MAU1), a locus affecting trichome number in the fruits of Arabidopsis (Arabidopsis thaliana) natural populations. To this end, we developed introgression lines (ILs) from the hairy fruit accession Don-0 in the genetic background of the Ler strain with glabrous fruits. Genetic analyses of ILs showed that MAU1 affects fruit trichome patterns through synergistic epistasis with the MYB genes TRICHOMELESS1 (TCL1), GLABRA1 (GL1), and TRIPTYCHON (TRY). In addition, fine mapping and characterization of transgenic lines demonstrated that MAU1 is the bHLH transcription factor gene EGL3, for which Don-0 carries a gain-of-function semidominant allele. Gene expression analyses did not detect differences between EGL3 alleles, thus supporting that a structural missense mutation is the causal nucleotide polymorphism of Don-0. Further phylogenetic analyses of EGL3 showed that most Arabidopsis populations with hairy fruits belong to three haplogroups, suggesting that additional EGL3 natural alleles account for fruit trichome development. Finally, the characterization of EGL3 pleiotropy indicates that Don-0 hyperfunction also increases stem trichome branching. We conclude that EGL3 interactions in the core gene regulatory network of trichome development explain the Arabidopsis natural diversity for fruit trichome pattern and morphology.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"61 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae673","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The number and distribution of trichomes, i.e., the trichome pattern, in different plant organs shows a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors. The genetic and molecular mechanisms accounting for the evolution of trichome patterns have just begun to be elucidated. In this study, we aimed to identify and characterize MALAMBRUNO 1 (MAU1), a locus affecting trichome number in the fruits of Arabidopsis (Arabidopsis thaliana) natural populations. To this end, we developed introgression lines (ILs) from the hairy fruit accession Don-0 in the genetic background of the Ler strain with glabrous fruits. Genetic analyses of ILs showed that MAU1 affects fruit trichome patterns through synergistic epistasis with the MYB genes TRICHOMELESS1 (TCL1), GLABRA1 (GL1), and TRIPTYCHON (TRY). In addition, fine mapping and characterization of transgenic lines demonstrated that MAU1 is the bHLH transcription factor gene EGL3, for which Don-0 carries a gain-of-function semidominant allele. Gene expression analyses did not detect differences between EGL3 alleles, thus supporting that a structural missense mutation is the causal nucleotide polymorphism of Don-0. Further phylogenetic analyses of EGL3 showed that most Arabidopsis populations with hairy fruits belong to three haplogroups, suggesting that additional EGL3 natural alleles account for fruit trichome development. Finally, the characterization of EGL3 pleiotropy indicates that Don-0 hyperfunction also increases stem trichome branching. We conclude that EGL3 interactions in the core gene regulatory network of trichome development explain the Arabidopsis natural diversity for fruit trichome pattern and morphology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. Shoot hydraulic impairments induced by root waterlogging: Parallels and contrasts with drought. Lipid droplets: New roles as mediators of biotic and abiotic stress. Cucumber JASMONATE ZIM-DOMAIN 8 interaction with transcription factor MYB6 impairs waterlogging-triggered adventitious rooting. Rooting for survival: OsCDPK5 and OsCDPK13 are crucial for rice acclimation to low-oxygen conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1