Asteroseismic modelling of fast rotators and its opportunities for astrophysics

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-12-20 DOI:10.1051/0004-6361/202348575
Conny Aerts, Andrew Tkachenko
{"title":"Asteroseismic modelling of fast rotators and its opportunities for astrophysics","authors":"Conny Aerts, Andrew Tkachenko","doi":"10.1051/0004-6361/202348575","DOIUrl":null,"url":null,"abstract":"Rotation matters for the life of a star. It causes a multitude of dynamical phenomena in the stellar interior during a star’s evolution, and its effects accumulate until the star dies. All stars rotate at some level, but most of those born with a mass higher than 1.3 times the mass of the Sun rotate rapidly during more than 90% of their nuclear lifetime. Internal rotation guides the angular momentum and chemical element transport throughout the stellar interior. These transport processes change over time as the star evolves. The cumulative effects of stellar rotation and its induced transport processes determine the helium content of the core by the time it exhausts its hydrogen isotopes. The amount of helium at that stage also guides the heavy element yields by the end of the star’s life. A proper theory of stellar evolution and any realistic models for the chemical enrichment of galaxies must be based on observational calibrations of stellar rotation and of the induced transport processes. In the last few years, asteroseismology offers such calibrations for single and binary stars. We review the current status of asteroseismic modelling of rotating stars for different stellar mass regimes in an accessible way for the non-expert. While doing so, we describe exciting opportunities sparked by asteroseismology for various domains in astrophysics, touching upon topics such as exoplanetary science, galactic structure and evolution, and gravitational wave physics to mention just a few. Along the way we provide ample sneak-previews for future ‘industrialised’ applications of asteroseismology to slow and rapid rotators from the exploitation of combined <i>Kepler<i/>, Transiting Exoplanet Survey Satellite (TESS), PLAnetary Transits and Oscillations of stars (PLATO), <i>Gaia<i/>, and ground-based spectroscopic and multi-colour photometric surveys. We end the review with a list of takeaway messages and achievements of asteroseismology that are of relevance for many fields of astrophysics.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"19 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202348575","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rotation matters for the life of a star. It causes a multitude of dynamical phenomena in the stellar interior during a star’s evolution, and its effects accumulate until the star dies. All stars rotate at some level, but most of those born with a mass higher than 1.3 times the mass of the Sun rotate rapidly during more than 90% of their nuclear lifetime. Internal rotation guides the angular momentum and chemical element transport throughout the stellar interior. These transport processes change over time as the star evolves. The cumulative effects of stellar rotation and its induced transport processes determine the helium content of the core by the time it exhausts its hydrogen isotopes. The amount of helium at that stage also guides the heavy element yields by the end of the star’s life. A proper theory of stellar evolution and any realistic models for the chemical enrichment of galaxies must be based on observational calibrations of stellar rotation and of the induced transport processes. In the last few years, asteroseismology offers such calibrations for single and binary stars. We review the current status of asteroseismic modelling of rotating stars for different stellar mass regimes in an accessible way for the non-expert. While doing so, we describe exciting opportunities sparked by asteroseismology for various domains in astrophysics, touching upon topics such as exoplanetary science, galactic structure and evolution, and gravitational wave physics to mention just a few. Along the way we provide ample sneak-previews for future ‘industrialised’ applications of asteroseismology to slow and rapid rotators from the exploitation of combined Kepler, Transiting Exoplanet Survey Satellite (TESS), PLAnetary Transits and Oscillations of stars (PLATO), Gaia, and ground-based spectroscopic and multi-colour photometric surveys. We end the review with a list of takeaway messages and achievements of asteroseismology that are of relevance for many fields of astrophysics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Asteroseismic modelling of fast rotators and its opportunities for astrophysics Spatial distributions of extreme-ultraviolet brightenings in the quiet Sun Time evolution of o-H2D+, N2D+, and N2H+ during the high-mass star formation process Effects of the grain temperature distribution on the organic chemistry of protostellar envelopes Characterizing Jupiter’s interior using machine learning reveals four key structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1