Cl− Boosted Active and Stable Seawater Reduction on Pt/CoP Nanoarray Electrocatalysts

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-12-23 DOI:10.1002/aenm.202404978
Wei Liu, Xinlong Guo, Zheheng Jiang, Jiage Yu, Linlin Zhou, Tianshui Li, Yinghao Guo, Shihang Li, Boyu Ding, Kairui Wang, Yongqiang Yang, Huijun Xin, Daojin Zhou, Yun Kuang, Xiaoming Sun
{"title":"Cl− Boosted Active and Stable Seawater Reduction on Pt/CoP Nanoarray Electrocatalysts","authors":"Wei Liu, Xinlong Guo, Zheheng Jiang, Jiage Yu, Linlin Zhou, Tianshui Li, Yinghao Guo, Shihang Li, Boyu Ding, Kairui Wang, Yongqiang Yang, Huijun Xin, Daojin Zhou, Yun Kuang, Xiaoming Sun","doi":"10.1002/aenm.202404978","DOIUrl":null,"url":null,"abstract":"Hydrogen evolution in alkaline condition is kinetically unfavorable and requires active and stable electrocatalysts, not to mention the complex composition of seawater in catalytic alkaline seawater electrolysis. Herein, highly dispersed Pt on CoP nanoarray (denoted as Pt/CoP) is decorated as a hydrogen evolution electrocatalyst and further improved its activity by modulating the binding interaction between free Cl<jats:sup>−</jats:sup> in alkaline seawater and Pt/CoP. Compared to the blank control without Cl<jats:sup>−</jats:sup>, which requires an overpotential of 76 mV, this cathode exhibits an overpotential as low as 39 mV to reach −100 mA cm<jats:sup>−2</jats:sup> after the addition of NaCl to the electrolyte. Characterizations and theoretical simulations demonstrate that Cl<jats:sup>−</jats:sup>coordinates with Pt species and strengthen the intermediates adsorption by reducing the electropositivity of the Pt sites. Furthermore, by coupling the Pt/CoP cathode with Ir/CoFe‐LDH anode, whose activity can also be boosted by Cl anions, the assembled seawater electrolyzer only required 1.75 V to 1 A cm<jats:sup>−2</jats:sup> and stably operate for over 100 h. This work presents a major leap in electrode development for ultra‐high performance seawater electrolysis, highlighting that Cl<jats:sup>−</jats:sup>, which is generally considered detrimental, can be effectively harnessed.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"13 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404978","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen evolution in alkaline condition is kinetically unfavorable and requires active and stable electrocatalysts, not to mention the complex composition of seawater in catalytic alkaline seawater electrolysis. Herein, highly dispersed Pt on CoP nanoarray (denoted as Pt/CoP) is decorated as a hydrogen evolution electrocatalyst and further improved its activity by modulating the binding interaction between free Cl in alkaline seawater and Pt/CoP. Compared to the blank control without Cl, which requires an overpotential of 76 mV, this cathode exhibits an overpotential as low as 39 mV to reach −100 mA cm−2 after the addition of NaCl to the electrolyte. Characterizations and theoretical simulations demonstrate that Clcoordinates with Pt species and strengthen the intermediates adsorption by reducing the electropositivity of the Pt sites. Furthermore, by coupling the Pt/CoP cathode with Ir/CoFe‐LDH anode, whose activity can also be boosted by Cl anions, the assembled seawater electrolyzer only required 1.75 V to 1 A cm−2 and stably operate for over 100 h. This work presents a major leap in electrode development for ultra‐high performance seawater electrolysis, highlighting that Cl, which is generally considered detrimental, can be effectively harnessed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Controlling Grain Boundary Segregation to Tune the Conductivity of Ceramic Proton Conductors Steric Engineering of Exciton Fine Structure in 2D Perovskites Attaining Full Li‐Ion Storage Capacity in Nearly Defect‐free and Preferential Orientation Grown LiCoPO4 Via ab initio Solvothermal Crystallization Control Lattice-Matched Ru/W2C Heterointerfaces with Reversible Hydrogen Spillover for Efficient Alkaline Hydrogen Evolution Flocculating-Regulated TiO2 Deposition Enables the Synergistic Effect of Doping for Perovskite Solar Cells with Efficiency Exceeding 25.8%
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1