Air-Drying for Rapid Manufacture of Flexible Aramid Nanofiber Aerogel Fibers with Robust Mechanical Properties and Thermal Insulation in Harsh Environments

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-12-23 DOI:10.1002/smll.202409408
Yajie Cheng, Hongli Cheng, Jin Gao, Yajun Xue, Gaojie Han, Bing Zhou, Chuntai Liu, Yuezhan Feng, Changyu Shen
{"title":"Air-Drying for Rapid Manufacture of Flexible Aramid Nanofiber Aerogel Fibers with Robust Mechanical Properties and Thermal Insulation in Harsh Environments","authors":"Yajie Cheng, Hongli Cheng, Jin Gao, Yajun Xue, Gaojie Han, Bing Zhou, Chuntai Liu, Yuezhan Feng, Changyu Shen","doi":"10.1002/smll.202409408","DOIUrl":null,"url":null,"abstract":"Aerogel fibers uniting characteristics of both aerogels (lightweight and porosity) and fibers (flexibility and wearability) exhibit a great potential for the production of the next generation of thermal protection textiles; still, the complex drying procedures and mechanical brittleness remain the main obstacles toward further exploitation. Herein, flexible and robust aramid nanofiber aerogel fibers (ANAFs) are scalably prepared by continuous wet-spinning coupled with fast air-drying. This synthesis involves calcium ions (Ca<sup>2</sup>⁺) cross-linking and solvent displacement by low surface tension solvents, to enhance skeleton strength and reduce the capillary force during evaporation, respectively, thus minimizing shrinkage to 29.0% and maximizing specific surface area to 225.0 m<sup>2</sup> g<sup>−1</sup> for ANAF. Surprisingly, the air-dried ANAF showed excellent tensile strength (13.5 MPa) and toughness (7.0 MJ m<sup>−3</sup>), allowing their easy weaving into the textile without damage. Importantly, the ANAF textile with a skin-core porous structure exhibited low thermal conductivity (≈38.5 mW m<sup>−1</sup> K<sup>−1</sup>) and excellent thermal insulation ability in the wide temperature range (−196 to 400 °C). Besides, the aramid molecular structure, as well as Ca<sup>2</sup>⁺ cross-linking, endowed the ANAF with high thermal stability and flame retardancy. Consequently, the robust ANAF with a fast-air-drying method is promising for thermal protection in extreme environments, such as in spacesuits.","PeriodicalId":228,"journal":{"name":"Small","volume":"62 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409408","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aerogel fibers uniting characteristics of both aerogels (lightweight and porosity) and fibers (flexibility and wearability) exhibit a great potential for the production of the next generation of thermal protection textiles; still, the complex drying procedures and mechanical brittleness remain the main obstacles toward further exploitation. Herein, flexible and robust aramid nanofiber aerogel fibers (ANAFs) are scalably prepared by continuous wet-spinning coupled with fast air-drying. This synthesis involves calcium ions (Ca2⁺) cross-linking and solvent displacement by low surface tension solvents, to enhance skeleton strength and reduce the capillary force during evaporation, respectively, thus minimizing shrinkage to 29.0% and maximizing specific surface area to 225.0 m2 g−1 for ANAF. Surprisingly, the air-dried ANAF showed excellent tensile strength (13.5 MPa) and toughness (7.0 MJ m−3), allowing their easy weaving into the textile without damage. Importantly, the ANAF textile with a skin-core porous structure exhibited low thermal conductivity (≈38.5 mW m−1 K−1) and excellent thermal insulation ability in the wide temperature range (−196 to 400 °C). Besides, the aramid molecular structure, as well as Ca2⁺ cross-linking, endowed the ANAF with high thermal stability and flame retardancy. Consequently, the robust ANAF with a fast-air-drying method is promising for thermal protection in extreme environments, such as in spacesuits.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells Making Accessible and Attractive Porosities in Block Copolymer Nanofibers for Highly Permeable and Durable Air Filtration Prodrug Self‐Assemblies Based on Plant Volatile Aldehydes with Improved Stability and Antimicrobial Activity Against Plant Pathogens MOF‐Based Biomimetic Enzyme Microrobots for Efficient Detection of Total Antioxidant Capacity of Fruits and Vegetables Photoelectron Therapy Preventing the Formation of Bacterial Biofilm on Titanium Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1