Developing High Energy Density Li‐S Batteries via Pore‐Structure Regulation of Porous Carbon Based Electrocatalyst

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-12-23 DOI:10.1002/smll.202410907
Pengpeng Zhang, Chen Wang, Jingbo Zhang, Ruohan Hou, Shijie Zhang, Kangli Liu, S. Ravi P. Silva, Peng Zhang, Guosheng Shao
{"title":"Developing High Energy Density Li‐S Batteries via Pore‐Structure Regulation of Porous Carbon Based Electrocatalyst","authors":"Pengpeng Zhang, Chen Wang, Jingbo Zhang, Ruohan Hou, Shijie Zhang, Kangli Liu, S. Ravi P. Silva, Peng Zhang, Guosheng Shao","doi":"10.1002/smll.202410907","DOIUrl":null,"url":null,"abstract":"The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid‐state products, reduce the Li<jats:sub>2</jats:sub>S film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium‐sulfur (Li‐S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density. In this work, the pore structure of carbon nanosheet‐based electrocatalysts is precisely controlled by adjusting the content of a water‐soluble potassium chloride template, allowing for in‐depth investigation of the relationship between pore structure, electrolyte usage, and electrochemical performance in Li‐S batteries. The molybdenum carbide‐embedded carbon nanosheet (MoC‐CNS) electrocatalyst, with an optimized pore structure, facilitates exceptional electrochemical performance under high sulfur loading and lean electrolyte conditions. Ultimately, the MoC‐CNS‐3‐based Li‐S battery achieved stable operation over 50 cycles under high sulfur loading (12 mg cm<jats:sup>−2</jats:sup>) and a low electrolyte‐to‐sulfur (E/S) ratio of 4 uL mg<jats:sup>−1</jats:sup>, delivering a high gravimetric energy density of 354.5 Wh kg<jats:sup>−1</jats:sup>. This work provides a viable strategy for developing high‐performance Li‐S batteries.","PeriodicalId":228,"journal":{"name":"Small","volume":"8 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410907","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid‐state products, reduce the Li2S film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium‐sulfur (Li‐S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density. In this work, the pore structure of carbon nanosheet‐based electrocatalysts is precisely controlled by adjusting the content of a water‐soluble potassium chloride template, allowing for in‐depth investigation of the relationship between pore structure, electrolyte usage, and electrochemical performance in Li‐S batteries. The molybdenum carbide‐embedded carbon nanosheet (MoC‐CNS) electrocatalyst, with an optimized pore structure, facilitates exceptional electrochemical performance under high sulfur loading and lean electrolyte conditions. Ultimately, the MoC‐CNS‐3‐based Li‐S battery achieved stable operation over 50 cycles under high sulfur loading (12 mg cm−2) and a low electrolyte‐to‐sulfur (E/S) ratio of 4 uL mg−1, delivering a high gravimetric energy density of 354.5 Wh kg−1. This work provides a viable strategy for developing high‐performance Li‐S batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells Making Accessible and Attractive Porosities in Block Copolymer Nanofibers for Highly Permeable and Durable Air Filtration Prodrug Self‐Assemblies Based on Plant Volatile Aldehydes with Improved Stability and Antimicrobial Activity Against Plant Pathogens MOF‐Based Biomimetic Enzyme Microrobots for Efficient Detection of Total Antioxidant Capacity of Fruits and Vegetables Photoelectron Therapy Preventing the Formation of Bacterial Biofilm on Titanium Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1