Tough Polyurethane Hydrogels with a Multiple Hydrogen‐Bond Interlocked Bicontinuous Phase Structure Prepared by In Situ Water‐Induced Microphase Separation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-12-23 DOI:10.1002/adma.202412083
Ruyue Wang, Ting Xu, Yuxuan Yang, Mengyuan Zhang, Ruilin Xie, Yilong Cheng, Yanfeng Zhang
{"title":"Tough Polyurethane Hydrogels with a Multiple Hydrogen‐Bond Interlocked Bicontinuous Phase Structure Prepared by In Situ Water‐Induced Microphase Separation","authors":"Ruyue Wang, Ting Xu, Yuxuan Yang, Mengyuan Zhang, Ruilin Xie, Yilong Cheng, Yanfeng Zhang","doi":"10.1002/adma.202412083","DOIUrl":null,"url":null,"abstract":"Hydrogels with mechanical performances similar to load‐bearing tissues are in demand for in vivo applications. In this work, inspired by the self‐assembly behavior of amphiphilic polymers, polyurethane‐based tough hydrogels with a multiple hydrogen‐bond interlocked bicontinuous phase structure through in situ water‐induced microphase separation strategy are developed, in which poly(ethylene glycol)‐based polyurethane (PEG‐PU, hydrophilic) and poly(ε‐caprolactone)‐based polyurethane (PCL‐PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG‐PU and PCL‐PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.9 MPa, fracture energy of 2435 J m<jats:sup>−2</jats:sup>, and toughness of 48.2 MJ m<jats:sup>−3</jats:sup>. As a biomedical patch, the outstanding mechanical performances can withstand abdominal pressure to prevent hernia formation in the abdominal wall defect model. Compared to the commercial PP mesh, hydrogel can prevent tissue/organ adhesion to reduce inflammatory responses and promote angiogenesis, thereby accelerating the repair of abdominal wall defects. This work may provide useful inspiration for researchers to design different gel materials through solvent‐induced microphase separation.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"8 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412083","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels with mechanical performances similar to load‐bearing tissues are in demand for in vivo applications. In this work, inspired by the self‐assembly behavior of amphiphilic polymers, polyurethane‐based tough hydrogels with a multiple hydrogen‐bond interlocked bicontinuous phase structure through in situ water‐induced microphase separation strategy are developed, in which poly(ethylene glycol)‐based polyurethane (PEG‐PU, hydrophilic) and poly(ε‐caprolactone)‐based polyurethane (PCL‐PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG‐PU and PCL‐PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.9 MPa, fracture energy of 2435 J m−2, and toughness of 48.2 MJ m−3. As a biomedical patch, the outstanding mechanical performances can withstand abdominal pressure to prevent hernia formation in the abdominal wall defect model. Compared to the commercial PP mesh, hydrogel can prevent tissue/organ adhesion to reduce inflammatory responses and promote angiogenesis, thereby accelerating the repair of abdominal wall defects. This work may provide useful inspiration for researchers to design different gel materials through solvent‐induced microphase separation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Rationally Engineering Pro‐Proteins and Membrane‐Penetrating α‑Helical Polypeptides for Genome Editing Toward Choroidal Neovascularization Treatment Clarifying the Active Structure and Reaction Mechanism of Atomically Dispersed Metal and Nonmetal Sites with Enhanced Activity for Oxygen Reduction Reaction Self-Wrinkling-Induced Mechanically Adaptive Patterned Surface of Photocuring Coating for Abrasion Resistance Flexible Photonic Materials and Devices: Synthetic Strategies, Sensing Properties, and Wearable Applications Ionic Diode-Based Drug Delivery System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1