Chaitali V. More, Nilesh L. Tarwal, Sunil N. Botewad, Mohd Anis, Vishnu V. Kutwade, Ferdi Akman, Osman Agar, Pravina P. Pawar
{"title":"Radiation shielding efficacy of unsaturated polyester composites for gamma and neutron attenuation-enhanced with SnO2","authors":"Chaitali V. More, Nilesh L. Tarwal, Sunil N. Botewad, Mohd Anis, Vishnu V. Kutwade, Ferdi Akman, Osman Agar, Pravina P. Pawar","doi":"10.1016/j.radphyschem.2024.112484","DOIUrl":null,"url":null,"abstract":"The present study has reported the radiation shielding properties of polymeric composites adding tin oxide (SnO<ce:inf loc=\"post\">2</ce:inf>) as a filler. For the purpose of assessing gamma-ray and neutron attenuation properties of the new unsaturated polyester resin composites with different SnO<ce:inf loc=\"post\">2</ce:inf> concentrations, samples were synthesized with successively increasing loadings of SnO<ce:inf loc=\"post\">2</ce:inf>. Theoretical, simulated, and experimental evaluations have shown a great match among experimental, computational, and simulation over a wide photon energy range (122 keV–1330 keV) using NaI (Tl) scintillation detectors, WinXCom computational code, and Monte Carlo (GEANT4) simulations. Fast neutron removal cross-sections (Σ<ce:inf loc=\"post\">R</ce:inf>), shielding properties against fast neutrons, were calculated. XRD, FE-SEM, and EDX structural grades were conducted to analyze microstructure of the composite and justify the dispersal of SnO<ce:inf loc=\"post\">2</ce:inf> in that matrix. The composite code-named S5 with SnO<ce:inf loc=\"post\">2</ce:inf> concentrations at 50% has the highest gamma and neutron shielding ability among all samples. Additionally, the compressive strength tests demonstrated the possibility of incorporating SnO<ce:inf loc=\"post\">2</ce:inf> in enhancing mechanical properties by improving structures while ensuring a reasonably good protection against radiation.","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"282 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2024.112484","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study has reported the radiation shielding properties of polymeric composites adding tin oxide (SnO2) as a filler. For the purpose of assessing gamma-ray and neutron attenuation properties of the new unsaturated polyester resin composites with different SnO2 concentrations, samples were synthesized with successively increasing loadings of SnO2. Theoretical, simulated, and experimental evaluations have shown a great match among experimental, computational, and simulation over a wide photon energy range (122 keV–1330 keV) using NaI (Tl) scintillation detectors, WinXCom computational code, and Monte Carlo (GEANT4) simulations. Fast neutron removal cross-sections (ΣR), shielding properties against fast neutrons, were calculated. XRD, FE-SEM, and EDX structural grades were conducted to analyze microstructure of the composite and justify the dispersal of SnO2 in that matrix. The composite code-named S5 with SnO2 concentrations at 50% has the highest gamma and neutron shielding ability among all samples. Additionally, the compressive strength tests demonstrated the possibility of incorporating SnO2 in enhancing mechanical properties by improving structures while ensuring a reasonably good protection against radiation.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.