Synergistic Enhancement of Plasma-Driven Ammonia Synthesis Using a AuCu3/Cu Composite Catalyst

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-23 DOI:10.1002/anie.202424165
Zhenlu Li, Dr. Shize Liu, Qingyun Zhan, Jiayang Li, Zihao Zhang, Yumeng Qian, Prof. Yiyu Cai, Prof. Xiaoyue Mu, Prof. Lu Li
{"title":"Synergistic Enhancement of Plasma-Driven Ammonia Synthesis Using a AuCu3/Cu Composite Catalyst","authors":"Zhenlu Li,&nbsp;Dr. Shize Liu,&nbsp;Qingyun Zhan,&nbsp;Jiayang Li,&nbsp;Zihao Zhang,&nbsp;Yumeng Qian,&nbsp;Prof. Yiyu Cai,&nbsp;Prof. Xiaoyue Mu,&nbsp;Prof. Lu Li","doi":"10.1002/anie.202424165","DOIUrl":null,"url":null,"abstract":"<p>Green ammonia synthesis using fluctuating renewable energy supply in decentralized process is a goal that has been long sought after. Ammonia synthesis with non-thermal plasma under mild conditions is a promising technology, but it faces the critical challenge of low energy efficiency. Herein, we develop an easily-scalable AuCu<sub>3</sub>/Cu catalyst, which consists of a decimeter-scale metallic Cu antenna and nano-scale AuCu<sub>3</sub> catalytic sites on metallic Cu surface, significantly enhancing the energy efficiency and ammonia yield in a radio-frequency (RF) plasma system. Compared to plasma alone, the single-pass ammonia yield over AuCu<sub>3</sub>/Cu increases by a factor of 20, approaching 10 %. Mechanistic studies indicate that Cu antenna can amplify the millimeter-scale local electric field, thereby facilitating the generation of active nitrogen species, including nitrogen radicals and vibration-excited nitrogen molecules. Due to the downshifted d-band center and unique Cu−Au interface structure, the AuCu<sub>3</sub> nanoalloy modified on Cu antenna surface significantly reduces hydrogenation barriers of active NH<sub>X</sub> (<i>x</i>=0,1,2) species (the rate-determining step) and facilitates ammonia desorption at lower temperature. The synergistic effect of Cu antenna and surface AuCu<sub>3</sub> nanoalloy comprehensively enhances ammonia synthesis through both the nitrogen radical-mediated Eley-Rideal pathway and the vibration-excited nitrogen molecule-mediated Langmuir–Hinshelwood pathway.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 12","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202424165","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Green ammonia synthesis using fluctuating renewable energy supply in decentralized process is a goal that has been long sought after. Ammonia synthesis with non-thermal plasma under mild conditions is a promising technology, but it faces the critical challenge of low energy efficiency. Herein, we develop an easily-scalable AuCu3/Cu catalyst, which consists of a decimeter-scale metallic Cu antenna and nano-scale AuCu3 catalytic sites on metallic Cu surface, significantly enhancing the energy efficiency and ammonia yield in a radio-frequency (RF) plasma system. Compared to plasma alone, the single-pass ammonia yield over AuCu3/Cu increases by a factor of 20, approaching 10 %. Mechanistic studies indicate that Cu antenna can amplify the millimeter-scale local electric field, thereby facilitating the generation of active nitrogen species, including nitrogen radicals and vibration-excited nitrogen molecules. Due to the downshifted d-band center and unique Cu−Au interface structure, the AuCu3 nanoalloy modified on Cu antenna surface significantly reduces hydrogenation barriers of active NHX (x=0,1,2) species (the rate-determining step) and facilitates ammonia desorption at lower temperature. The synergistic effect of Cu antenna and surface AuCu3 nanoalloy comprehensively enhances ammonia synthesis through both the nitrogen radical-mediated Eley-Rideal pathway and the vibration-excited nitrogen molecule-mediated Langmuir–Hinshelwood pathway.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AuCu3/Cu复合催化剂对等离子体驱动氨合成的协同增强作用
利用分散过程中波动的可再生能源供应进行绿色合成氨是一个长期追求的目标。温和条件下的非热等离子体合成氨技术是一项很有前途的技术,但它面临着低能效的严峻挑战。在此,我们开发了一种易于扩展的AuCu3/Cu催化剂,该催化剂由一个分米级的金属Cu天线和金属Cu表面的纳米级AuCu3催化位点组成,显著提高了射频(RF)等离子体系统的能量效率和氨收率。与等离子体相比,AuCu3/Cu的单次氨收率增加了20倍,接近10%。机理研究表明,Cu天线可以放大毫米尺度的局域电场,从而促进活性氮种的产生,包括氮自由基和振动激发的氮分子。由于d波段中心下移和Cu- au界面结构独特,修饰在Cu天线表面的AuCu3纳米合金显著降低了活性NHX (x=0,1,2)的加氢势(速率决定步骤),有利于低温下氨的脱附。Cu天线和表面AuCu3纳米合金的协同效应通过氮自由基介导的Eley-Rideal途径和振动激发的氮分子介导的Langmuir-Hinshelwood途径全面促进氨合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Redox-Mediated Electrochemical Regeneration of Spent LiFePO4 Battery Cathodes Selective Upcycling of Polycarbonate Waste to Cyclohexanol via RuLa Dual-Atom Catalysis Anomeric Amides: Valuable Reagents in Synthetic Organic Chemistry Constructing Wide-Temperature-Range Li–S Batteries Through Synergistic Boride Spin-Polarization Coupling Regulation and Magnetohydrodynamic Effects Aqua-Oxidation of Polyethylene Into Carboxylic Acids Under Mild Conditions: A Catalyst-Free Upcycling Strategy for Nonpolar Plastics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1