Influence of CNTs distributions on three-dimensional vibration of sandwich plates with functionally-graded face sheets

IF 2.2 3区 工程技术 Q2 MECHANICS Archive of Applied Mechanics Pub Date : 2024-12-23 DOI:10.1007/s00419-024-02743-x
Yushan Xiao, Senlin Zhang, Zhen Wu, Jie Zhou, Zhengliang Liu, Xiaohui Ren
{"title":"Influence of CNTs distributions on three-dimensional vibration of sandwich plates with functionally-graded face sheets","authors":"Yushan Xiao,&nbsp;Senlin Zhang,&nbsp;Zhen Wu,&nbsp;Jie Zhou,&nbsp;Zhengliang Liu,&nbsp;Xiaohui Ren","doi":"10.1007/s00419-024-02743-x","DOIUrl":null,"url":null,"abstract":"<div><p>For a thick sandwich plate, transverse stretching vibration and in-plane vibration might occur before bending vibration in practical applications, which may threaten the dynamic safety of composite structures. Therefore, this work attempts to improve the in-plane and transverse stretching stiffness of sandwich structures by using carbon nanotubes (CNTs) to reinforce face sheets. To this end, it is necessary to understand well the influence of CNTs distributions on the three-dimensional (3D) vibration of functionally graded sandwich plates. Therefore, an extended global–local higher-order model will be proposed to accurately predict 3D vibration behaviors of sandwich structures reinforced by the CNTs, as the existing equivalent single-layer models will encounter difficulties in accurately analyzing such issues. Based on the proposed model, analytical solutions and finite element formulation have been presented to study the dynamic behaviors of sandwich plates with reinforcement of the CNTs, which have been verified by 3D elasticity solutions and three-dimensional finite element results. Moreover, the influence of the CNTs distributions and volume fractions on the vibration behaviors of sandwich plates has been investigated. Finally, by selecting appropriate profiles of the CNTs through the thickness, the in-plane and transverse stretching stiffness of sandwich structures can be significantly improved.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02743-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a thick sandwich plate, transverse stretching vibration and in-plane vibration might occur before bending vibration in practical applications, which may threaten the dynamic safety of composite structures. Therefore, this work attempts to improve the in-plane and transverse stretching stiffness of sandwich structures by using carbon nanotubes (CNTs) to reinforce face sheets. To this end, it is necessary to understand well the influence of CNTs distributions on the three-dimensional (3D) vibration of functionally graded sandwich plates. Therefore, an extended global–local higher-order model will be proposed to accurately predict 3D vibration behaviors of sandwich structures reinforced by the CNTs, as the existing equivalent single-layer models will encounter difficulties in accurately analyzing such issues. Based on the proposed model, analytical solutions and finite element formulation have been presented to study the dynamic behaviors of sandwich plates with reinforcement of the CNTs, which have been verified by 3D elasticity solutions and three-dimensional finite element results. Moreover, the influence of the CNTs distributions and volume fractions on the vibration behaviors of sandwich plates has been investigated. Finally, by selecting appropriate profiles of the CNTs through the thickness, the in-plane and transverse stretching stiffness of sandwich structures can be significantly improved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管分布对功能梯度夹层板三维振动的影响
对于厚夹层板,在实际应用中,在弯曲振动之前可能会发生横向拉伸振动和面内振动,从而威胁到复合材料结构的动力安全。因此,本研究试图通过使用碳纳米管(CNTs)加固面板来提高夹层结构的面内和横向拉伸刚度。为此,有必要了解CNTs分布对功能梯度夹层板三维振动的影响。因此,为了准确预测CNTs增强夹层结构的三维振动行为,将提出一种扩展的全局-局部高阶模型,现有的等效单层模型难以准确分析这类问题。基于所提出的模型,提出了研究CNTs加筋夹层板动力行为的解析解和有限元公式,并通过三维弹性解和三维有限元结果进行了验证。此外,还研究了碳纳米管分布和体积分数对夹层板振动性能的影响。最后,通过厚度选择合适的碳纳米管轮廓,可以显著提高夹层结构的面内和横向拉伸刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
期刊最新文献
Continuation fraction perturbation effect on out-of-plane equilibrium points Analysis of thermoelastic dissipation in couple stress-based beams with two-dimensional Moore–Gibson–Thompson heat conduction Modeling method for boundary conditions of the rectangular thin plate by using the power series polynomial A semi-analytical solution for the one-dimensional transient response of layered unsaturated porous media Solving Hilfer fractional dirac systems: a spectral approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1