Fellype do Nascimento, Kleber A. Petroski, Thalita M. C. Nishime, Konstantin G. Kostov
{"title":"Measurements of power dissipated in an atmospheric pressure plasma jet device with double plasma discharge ignition","authors":"Fellype do Nascimento, Kleber A. Petroski, Thalita M. C. Nishime, Konstantin G. Kostov","doi":"10.1140/epjd/s10053-024-00946-z","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric pressure plasma jets (APPJs) are versatile devices with numerous applications. This work focuses on APPJs generated at the tip of long, flexible tubes using the jet transfer technique. The plasma source consists of a primary discharge and a secondary discharge forming the plasma jet. Discharge power measurements were carried out in a way that it was possible to separate the contribution of the primary discharge from the total power dissipated by the plasma source. Both power and effective current were analyzed under different operating conditions. The results show that the variation in the primary discharge power is much lower than the power dissipated by the plasma jet. Additionally, the electrical characteristics of the plasma device were analyzed. Notable differences were observed between the negative and positive phases of the discharge, with a more resistive load in the negative one, which suggests that the electrical equivalent circuit model changes according to the voltage polarity.</p><p>The primary discharge spectra are not affected by differences in electrical characteristics of the discharges with the plasma jet on and off</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00946-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric pressure plasma jets (APPJs) are versatile devices with numerous applications. This work focuses on APPJs generated at the tip of long, flexible tubes using the jet transfer technique. The plasma source consists of a primary discharge and a secondary discharge forming the plasma jet. Discharge power measurements were carried out in a way that it was possible to separate the contribution of the primary discharge from the total power dissipated by the plasma source. Both power and effective current were analyzed under different operating conditions. The results show that the variation in the primary discharge power is much lower than the power dissipated by the plasma jet. Additionally, the electrical characteristics of the plasma device were analyzed. Notable differences were observed between the negative and positive phases of the discharge, with a more resistive load in the negative one, which suggests that the electrical equivalent circuit model changes according to the voltage polarity.
The primary discharge spectra are not affected by differences in electrical characteristics of the discharges with the plasma jet on and off
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.