Reconstructing mantle–crust boundary magmatism through Cimmerian orogenic events: evidence from deep crustal cumulates in northeastern Pamir

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Contributions to Mineralogy and Petrology Pub Date : 2024-12-23 DOI:10.1007/s00410-024-02192-3
Masumeh Sargazi, Chuan-Lin Zhang, Yan Jing, Zahid Hussain, Zhi-Hao Song, Hong-Ran Wang, Xiao-Qiang Liu, Xian-Tao Ye
{"title":"Reconstructing mantle–crust boundary magmatism through Cimmerian orogenic events: evidence from deep crustal cumulates in northeastern Pamir","authors":"Masumeh Sargazi,&nbsp;Chuan-Lin Zhang,&nbsp;Yan Jing,&nbsp;Zahid Hussain,&nbsp;Zhi-Hao Song,&nbsp;Hong-Ran Wang,&nbsp;Xiao-Qiang Liu,&nbsp;Xian-Tao Ye","doi":"10.1007/s00410-024-02192-3","DOIUrl":null,"url":null,"abstract":"<div><p>Deep crustal cumulates directly represent the geochemical composition of the lower crust and can provide insights into magmatism at the mantle–crust boundary. However, the scarcity of exposed deep crustal cumulates, which is due to their high density causing such rocks to sink into the mantle, limits our access to deep crustal samples. This study investigated hydrous late Mesozoic mafic–ultramafic cumulate rocks from northeastern Pamir. These rocks are the first of their kind identified in this region and exhibit features typical of deep sub-arc hydrous cumulates worldwide. Petrography, zircon U–Pb ages and zircon Lu–Hf isotopes, whole-rock geochemistry and Sr–Nd isotopes, and mineral major and trace element chemistry were used to constrain the magmatic evolution from source to surface and the crystallization conditions of the primary magma at depth. In situ zircon U–Pb dating yielded a concordant age of 199 ± 1.3 Ma. The mafic cumulates are hornblende gabbros, which had a crystallization sequence of amphibole/magnetite → plagioclase → biotite → apatite. Hornblende geobarometry yielded an equilibrium pressure of 0.65–0.80 ± 0.14 GPa, corresponding to depths of 20–26 km. The ultramafic cumulates, are lherzolites and olivine clinopyroxenites that have a crystallization sequence of olivine/spinel → clinopyroxene → ± orthopyroxene. The estimated pressure, based on published experimental constrains, suggests high-pressure crystallization occurred at ~ 1 GPa. The elevated magmatic oxygen fugacity (ƒO<sub>2</sub>) is consistent with values expected for sub-arc conditions, where FMQ is 1–4 log units more oxidized than mid-ocean ridge basalts. The trace element composition of melts calculated to be in equilibrium with clinopyroxene is comparable to the global average composition of continental calc-alkaline basalts. Based on the petrography, mineral chemistry, and uniform whole-rock Sr–Nd isotopic data, the mafic–ultramafic cumulate rocks are inferred to have formed by fractional crystallization of a common hydrous (~ 2 wt% H<sub>2</sub>O) parental melt derived from a depleted mantle source (<sup>87</sup>Sr/<sup>86</sup>Sr = 0.7046–0.7132 ε<sub>Nd</sub>(t) = 1.5–3.3, ε<sub>Hf</sub>(t) = 1.1–11). These results support the notion that the polybaric differentiation in the lower crust can significantly influence the diversity of geochemical composition in the upper crust and highlight that the final closure of the Paleo-Tethys in the northeastern Pamir may not have occurred before the early Jurassic.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02192-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep crustal cumulates directly represent the geochemical composition of the lower crust and can provide insights into magmatism at the mantle–crust boundary. However, the scarcity of exposed deep crustal cumulates, which is due to their high density causing such rocks to sink into the mantle, limits our access to deep crustal samples. This study investigated hydrous late Mesozoic mafic–ultramafic cumulate rocks from northeastern Pamir. These rocks are the first of their kind identified in this region and exhibit features typical of deep sub-arc hydrous cumulates worldwide. Petrography, zircon U–Pb ages and zircon Lu–Hf isotopes, whole-rock geochemistry and Sr–Nd isotopes, and mineral major and trace element chemistry were used to constrain the magmatic evolution from source to surface and the crystallization conditions of the primary magma at depth. In situ zircon U–Pb dating yielded a concordant age of 199 ± 1.3 Ma. The mafic cumulates are hornblende gabbros, which had a crystallization sequence of amphibole/magnetite → plagioclase → biotite → apatite. Hornblende geobarometry yielded an equilibrium pressure of 0.65–0.80 ± 0.14 GPa, corresponding to depths of 20–26 km. The ultramafic cumulates, are lherzolites and olivine clinopyroxenites that have a crystallization sequence of olivine/spinel → clinopyroxene → ± orthopyroxene. The estimated pressure, based on published experimental constrains, suggests high-pressure crystallization occurred at ~ 1 GPa. The elevated magmatic oxygen fugacity (ƒO2) is consistent with values expected for sub-arc conditions, where FMQ is 1–4 log units more oxidized than mid-ocean ridge basalts. The trace element composition of melts calculated to be in equilibrium with clinopyroxene is comparable to the global average composition of continental calc-alkaline basalts. Based on the petrography, mineral chemistry, and uniform whole-rock Sr–Nd isotopic data, the mafic–ultramafic cumulate rocks are inferred to have formed by fractional crystallization of a common hydrous (~ 2 wt% H2O) parental melt derived from a depleted mantle source (87Sr/86Sr = 0.7046–0.7132 εNd(t) = 1.5–3.3, εHf(t) = 1.1–11). These results support the notion that the polybaric differentiation in the lower crust can significantly influence the diversity of geochemical composition in the upper crust and highlight that the final closure of the Paleo-Tethys in the northeastern Pamir may not have occurred before the early Jurassic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
期刊最新文献
Quantifying the partial melting of Himalayan Metamorphic core in Eastern Himalaya: implications for crustal rheology Early Permian post-collisional magmatism induced by extensive removal of the Variscan lithospheric mantle Water solubility of olivine under redox-controlled deep upper mantle conditions: effects of pressure, temperature and coexisting fluids and implications Reconstructing mantle–crust boundary magmatism through Cimmerian orogenic events: evidence from deep crustal cumulates in northeastern Pamir Monazite petrochronology dates Jurassic and Cretaceous cycles of prograde and retrograde metamorphism in the Funeral Mountains, California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1