Recent developments on multiscale simulations for rheology and complex flow of polymers

IF 2.6 4区 工程技术 Q2 MECHANICS Korea-Australia Rheology Journal Pub Date : 2024-10-24 DOI:10.1007/s13367-024-00112-2
Takeshi Sato, Kenji Yoshimoto
{"title":"Recent developments on multiscale simulations for rheology and complex flow of polymers","authors":"Takeshi Sato,&nbsp;Kenji Yoshimoto","doi":"10.1007/s13367-024-00112-2","DOIUrl":null,"url":null,"abstract":"<div><p>This review summarized the multiscale simulation (MSS) methods for polymeric liquids. Since polymeric liquids have multiscale characteristics of monomeric, mesoscopic, and macroscopic flow scales, MSSs that relate different hierarchical levels are adequate to reproduce flow properties accurately. Our review includes pioneering studies to the most advanced MSS studies on rheology predictions and flow simulations of polymeric liquids. We discuss two major types of MSS methods: the bottom-up and model-embedded MSS methods. The former method mainly connects all-atom molecular dynamics models and mesoscopic models to predict rheological properties. In contrast, the latter method, where a microscopic or mesoscopic model is embedded in a macroscopic computational domain, is designed to predict macroscopic flow properties. Finally, we also discuss MSS methods using machine learning techniques.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"36 4","pages":"253 - 269"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13367-024-00112-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-024-00112-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This review summarized the multiscale simulation (MSS) methods for polymeric liquids. Since polymeric liquids have multiscale characteristics of monomeric, mesoscopic, and macroscopic flow scales, MSSs that relate different hierarchical levels are adequate to reproduce flow properties accurately. Our review includes pioneering studies to the most advanced MSS studies on rheology predictions and flow simulations of polymeric liquids. We discuss two major types of MSS methods: the bottom-up and model-embedded MSS methods. The former method mainly connects all-atom molecular dynamics models and mesoscopic models to predict rheological properties. In contrast, the latter method, where a microscopic or mesoscopic model is embedded in a macroscopic computational domain, is designed to predict macroscopic flow properties. Finally, we also discuss MSS methods using machine learning techniques.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物流变和复杂流动的多尺度模拟研究进展
综述了聚合物液体的多尺度模拟方法。由于聚合物液体具有单体、介观和宏观流动尺度的多尺度特征,涉及不同层次水平的mss足以准确再现流动特性。我们的回顾包括最先进的MSS研究在流变学预测和流动模拟聚合物液体的开创性研究。我们讨论了两种主要类型的MSS方法:自底向上和模型嵌入的MSS方法。前一种方法主要是将全原子分子动力学模型和介观模型结合起来预测流变性能。相比之下,后一种方法是将微观或介观模型嵌入宏观计算域中,旨在预测宏观流动特性。最后,我们还讨论了使用机器学习技术的MSS方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korea-Australia Rheology Journal
Korea-Australia Rheology Journal 工程技术-高分子科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.
期刊最新文献
Physics-informed neural networks for complex fluids: opportunities and limitations From 3D particle structuring to the 3D printing of silicones: A review Rheology of physiological fluids and their artificial substitutes Toroidal mixers for microfluidic assembly of therapeutic lipid nanoparticles (LNPs): a review Experimental study of the rheological and viscoelastic properties of lubricating greases at high temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1