Freezing droplet ejection by spring-like elastic pillars

Huanhuan Zhang, Wei Zhang, Yuankai Jin, Chenyang Wu, Zhenyu Xu, Siyan Yang, Shouwei Gao, Fayu Liu, Wanghuai Xu, Steven Wang, Haimin Yao, Zuankai Wang
{"title":"Freezing droplet ejection by spring-like elastic pillars","authors":"Huanhuan Zhang, Wei Zhang, Yuankai Jin, Chenyang Wu, Zhenyu Xu, Siyan Yang, Shouwei Gao, Fayu Liu, Wanghuai Xu, Steven Wang, Haimin Yao, Zuankai Wang","doi":"10.1038/s44286-024-00150-1","DOIUrl":null,"url":null,"abstract":"Preventing water droplet accretion on surfaces is fundamentally interesting and practically important. Water droplets at room temperature can spontaneously detach from surfaces through texture design or coalescence-induced surface-to-kinetic energy transformation. However, under freezing conditions, these strategies become ineffective owing to the stronger droplet–surface interaction and the lack of an energy transformation pathway. Leveraging water volume expansion during freezing, we report a structured elastic surface with spring-like pillars and wetting contrast that renders the spontaneous ejection of freezing water droplets, regardless of their impacting locations. The spring-like pillars can store the work done by the seconds-long volume expansion of freezing droplets as elastic energy and then rapidly release it as kinetic energy within milliseconds. The three-orders-of-magnitude reduction in timescales leads to sufficient kinetic energy to drive freezing droplet ejection. We develop a theoretical model to elucidate the factors determining the successful onset of this phenomenon. Our design is potentially scalable in manufacturing through a numbering-up strategy, opening up applications in deicing, soft robotics and power generation. Preventing freezing droplet accretion on surfaces is practically important, yet challenging. Leveraging the water volume expansion during the freezing process, a structured elastic surface with spring-like pillars and wetting contrast is reported, which renders the spontaneous ejection of freezing water droplets, regardless of their impacting locations.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 12","pages":"765-773"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00150-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Preventing water droplet accretion on surfaces is fundamentally interesting and practically important. Water droplets at room temperature can spontaneously detach from surfaces through texture design or coalescence-induced surface-to-kinetic energy transformation. However, under freezing conditions, these strategies become ineffective owing to the stronger droplet–surface interaction and the lack of an energy transformation pathway. Leveraging water volume expansion during freezing, we report a structured elastic surface with spring-like pillars and wetting contrast that renders the spontaneous ejection of freezing water droplets, regardless of their impacting locations. The spring-like pillars can store the work done by the seconds-long volume expansion of freezing droplets as elastic energy and then rapidly release it as kinetic energy within milliseconds. The three-orders-of-magnitude reduction in timescales leads to sufficient kinetic energy to drive freezing droplet ejection. We develop a theoretical model to elucidate the factors determining the successful onset of this phenomenon. Our design is potentially scalable in manufacturing through a numbering-up strategy, opening up applications in deicing, soft robotics and power generation. Preventing freezing droplet accretion on surfaces is practically important, yet challenging. Leveraging the water volume expansion during the freezing process, a structured elastic surface with spring-like pillars and wetting contrast is reported, which renders the spontaneous ejection of freezing water droplets, regardless of their impacting locations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹簧状弹性柱的冷冻液滴喷射
从根本上讲,防止水滴在表面上积聚是一项有趣且具有实际意义的研究。在室温下,水滴可以通过织构设计或聚结诱导的表面-动能转化从表面自发分离。然而,在冻结条件下,由于液滴-表面相互作用更强,缺乏能量转化途径,这些策略变得无效。利用冻结过程中水体积的膨胀,我们报告了一个具有弹簧状柱和湿润对比的结构化弹性表面,无论其撞击位置如何,都可以自动喷出冷冻水滴。像弹簧一样的柱子可以将冷冻液滴在几秒钟内体积膨胀所做的功储存为弹性能,然后在几毫秒内迅速以动能释放出来。时间尺度上的三个数量级的减小使得有足够的动能驱动冷冻液滴喷射。我们开发了一个理论模型来阐明决定这一现象成功发生的因素。我们的设计在制造业中具有潜在的可扩展性,通过数量策略,在除冰、软机器人和发电方面开辟了应用。防止冰冻液滴在表面上积聚实际上很重要,但也很有挑战性。利用冻结过程中水的体积膨胀,构造了一个具有弹簧状柱和润湿对比的弹性表面,使冻结水滴无论在什么位置都能自发喷出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The human element of process design Life at low Reynolds number isn’t such a drag Extracting lithium from salt-lake brine Engineering considerations for next-generation oligonucleotide therapeutics Accelerating climate technologies through the science of scale-up
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1