Mechanisms of intergranular corrosion and self-healing in high temperature aged lean duplex stainless steel 2404

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Materials Degradation Pub Date : 2024-12-20 DOI:10.1038/s41529-024-00541-y
R. Silva, C. L. Kugelmeier, C. B. Martins Junior, P. H. F. Oliveira, D. C. C. Magalhães, A. H. Plaine, R. Magnabosco, C. A. D. Rovere
{"title":"Mechanisms of intergranular corrosion and self-healing in high temperature aged lean duplex stainless steel 2404","authors":"R. Silva, C. L. Kugelmeier, C. B. Martins Junior, P. H. F. Oliveira, D. C. C. Magalhães, A. H. Plaine, R. Magnabosco, C. A. D. Rovere","doi":"10.1038/s41529-024-00541-y","DOIUrl":null,"url":null,"abstract":"This study investigated the intergranular corrosion mechanism of lean duplex stainless steel 2404 after long-term aging at 700 and 800 °C using electrochemical methods, thermodynamic calculations, and kinetic models. At 700 °C, σ phase growth significantly increases the degree of sensitization (DOS) and decreases the breakdown potential (Eb). At 800 °C, a self-healing process at the ferrite/σ interface helps recover Cr and Mo depleted regions, reducing DOS after 72 h of aging and stabilizing Eb after 24 h at higher electrode potentials. However, the corrosion process is intensified at the σ/austenite interface, compromising intergranular corrosion resistance during prolonged aging. The findings show that complete recovery of corrosion resistance via self-healing is not achieved when high fractions of σ phase are formed. In addition, DICTRA calculations effectively evaluate corrosion resistance degradation from σ phase growth, providing deeper insights into the intergranular corrosion mechanism.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-16"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00541-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00541-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the intergranular corrosion mechanism of lean duplex stainless steel 2404 after long-term aging at 700 and 800 °C using electrochemical methods, thermodynamic calculations, and kinetic models. At 700 °C, σ phase growth significantly increases the degree of sensitization (DOS) and decreases the breakdown potential (Eb). At 800 °C, a self-healing process at the ferrite/σ interface helps recover Cr and Mo depleted regions, reducing DOS after 72 h of aging and stabilizing Eb after 24 h at higher electrode potentials. However, the corrosion process is intensified at the σ/austenite interface, compromising intergranular corrosion resistance during prolonged aging. The findings show that complete recovery of corrosion resistance via self-healing is not achieved when high fractions of σ phase are formed. In addition, DICTRA calculations effectively evaluate corrosion resistance degradation from σ phase growth, providing deeper insights into the intergranular corrosion mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温时效贫双相不锈钢2404的晶间腐蚀与自愈机制
采用电化学方法、热力学计算和动力学模型研究了贫双相不锈钢2404在700和800℃长期时效后的晶间腐蚀机理。在700℃时,σ相生长显著提高了敏化度(DOS),降低了击穿电位(Eb)。在800℃时,铁素体/σ界面处的自愈过程有助于恢复Cr和Mo贫化区域,在时效72 h后降低DOS,在高电极电位下24 h后稳定Eb。然而,腐蚀过程在σ/奥氏体界面处加剧,随着时效时间的延长,其抗晶间腐蚀性能下降。结果表明,当形成大量σ相时,合金的耐蚀性不能通过自愈完全恢复。此外,DICTRA计算有效地评估了σ相增长导致的耐蚀性退化,从而对晶间腐蚀机制有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
期刊最新文献
Mechanisms of corrosive freeze-thaw damage in AA7075 using time-resolved x-ray microtomography and correlative electron microscopy Mechanisms of intergranular corrosion and self-healing in high temperature aged lean duplex stainless steel 2404 Feedback effect of the size of mineral particles on the molecular mechanisms employed by Caballeronia mineralivorans PML1(12) to weather minerals Assessing the feasibility of using a data-driven corrosion rate model for optimizing dosages of corrosion inhibitors XGBoost model for the quantitative assessment of stress corrosion cracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1