Discovery of xanthone-based nitric oxide donors targeting biofilm clearance.

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Archiv der Pharmazie Pub Date : 2025-01-01 DOI:10.1002/ardp.202400793
Qun Tang, Wenchong Ye, Kasemsiri Chandarajoti, Rile Ge, Sai Lv, Keyu Zhang, Xiangan Han, Chunmei Wang, Han Bai, Xiaoyang Wang, Wen Zhou
{"title":"Discovery of xanthone-based nitric oxide donors targeting biofilm clearance.","authors":"Qun Tang, Wenchong Ye, Kasemsiri Chandarajoti, Rile Ge, Sai Lv, Keyu Zhang, Xiangan Han, Chunmei Wang, Han Bai, Xiaoyang Wang, Wen Zhou","doi":"10.1002/ardp.202400793","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria biofilm infection seriously challenges clinical drug therapy. Nitric oxide (NO) was reported to disperse biofilm, eliminate bacteria resistance and kill bacteria. In this study, on the basis of membrane targeting of α-mangostin (α-MG) and the dispersion effect of NO on bacteria biofilms, we designed and synthesized 30 NO donors that α-MG was conjugated with a nitrobenzene or a nitrate and other four representative reference derivatives. Compound 23 with 2-chloro-4-nitrobenzoyl introduced in the position C6 of α-MG exhibited the prominent ability to eradicate Staphylococcous aureus biofilm, and a more long-lasting and stable bactericidal effect in vitro, and lower hemolytic activity over α-MG. Moreover, a mouse wound model infected by S. aureus biofilm supported the in vivo reduced bacterial burden closely associated with the NO release from compound 23 that exerted a dispersing effect on biofilms. Therefore, our design strategy can provide a promising and effective solution to intervene in biofilm infection with high specificity.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 1","pages":"e2400793"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ardp.202400793","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria biofilm infection seriously challenges clinical drug therapy. Nitric oxide (NO) was reported to disperse biofilm, eliminate bacteria resistance and kill bacteria. In this study, on the basis of membrane targeting of α-mangostin (α-MG) and the dispersion effect of NO on bacteria biofilms, we designed and synthesized 30 NO donors that α-MG was conjugated with a nitrobenzene or a nitrate and other four representative reference derivatives. Compound 23 with 2-chloro-4-nitrobenzoyl introduced in the position C6 of α-MG exhibited the prominent ability to eradicate Staphylococcous aureus biofilm, and a more long-lasting and stable bactericidal effect in vitro, and lower hemolytic activity over α-MG. Moreover, a mouse wound model infected by S. aureus biofilm supported the in vivo reduced bacterial burden closely associated with the NO release from compound 23 that exerted a dispersing effect on biofilms. Therefore, our design strategy can provide a promising and effective solution to intervene in biofilm infection with high specificity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
期刊最新文献
Depsides from Origanum dictamnus and Satureja pilosa as selective inhibitors of carbonic anhydrases: Isolation, structure elucidation, X-ray crystallography. Discovery of xanthone-based nitric oxide donors targeting biofilm clearance. 6-aryloxy-2-aminopyrimidine-benzonitrile hybrids as anti-infective agents: Synthesis, bioevaluation, and molecular docking. New benzimidazole-indole-amide derivatives as potent α-glucosidase and acetylcholinesterase inhibitors. Phthalimide derivatives as a new class of papain-like protease inhibitors in SARS-CoV-2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1