Melatonin Affects Peucedanum praeruptorum Vegetative Growth and Coumarin Synthesis by Modulating the Antioxidant System, Photosynthesis, and Endogenous Hormones.

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Pineal Research Pub Date : 2024-11-01 DOI:10.1111/jpi.70018
Xiaoting Wan, Yingyu Zhang, Guoyu Wang, Ranran Liao, Haoyu Pan, Cunwu Chen, Bangxing Han, Hui Deng, Cheng Song
{"title":"Melatonin Affects Peucedanum praeruptorum Vegetative Growth and Coumarin Synthesis by Modulating the Antioxidant System, Photosynthesis, and Endogenous Hormones.","authors":"Xiaoting Wan, Yingyu Zhang, Guoyu Wang, Ranran Liao, Haoyu Pan, Cunwu Chen, Bangxing Han, Hui Deng, Cheng Song","doi":"10.1111/jpi.70018","DOIUrl":null,"url":null,"abstract":"<p><p>The dried root of Peucedanum praeruptorum is often used medicinally and has high pyran- and furanocoumarin content. Although exogenous melatonin (MT) impacts the regulation of plant growth, stress responses, secondary metabolism, etc., it remains unclear whether MT regulates the vegetative growth and development of P. praeruptorum. Thus, the aim of the current study is to characterize the effects of different exogenous MT concentrations on the physiological functions, photosynthesis, antioxidant systems, hormone induction, and coumarin synthesis of P. praeruptorum. Different MT concentrations exert distinct regulatory effects on P. praeruptorum growth and the expression of genes related to coumarin synthesis. Treatment of P. praeruptorum with low concentrations of MT increases photosynthesis and leaf growth compared to the control, while high concentrations reduce root vitality and elongation and decrease the expression of photosynthetic system genes. Low concentrations of MT also significantly increase antioxidant enzyme activity and photosynthetic pigment content and modulate the levels of IAA, gibberellic acid, salicylic acid, jasmonic acid, abscisic acid, and endogenous MT. Moreover, MT increases the activity of the MT synthesis enzymes tryptophan decarboxylase, tryptophan hydroxylase, tryptamine-5-hydroxylase, serotonin N-acetyltransferase, acetylserotonin O-methyltransferase, and caffeic acid O-methyltransferase, and promotes the accumulation of isoscopoletin, scopoletin, peucedanocoumarin II, praeruptorin A, praeruptorin B, and praeruptorin E. MT also upregulates most genes associated with coumarin synthesis, including PAL1, C4H, 4CL-3, C3H-1, F6H-1, CCoAMT, OMT-1, CYP71AJ1, CYP84A1-1, S8H-1, PT-1, and COSY-1. These findings demonstrate that MT may improve P. praeruptorum growth and development while promoting the synthesis of coumarin components.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 8","pages":"e70018"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jpi.70018","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The dried root of Peucedanum praeruptorum is often used medicinally and has high pyran- and furanocoumarin content. Although exogenous melatonin (MT) impacts the regulation of plant growth, stress responses, secondary metabolism, etc., it remains unclear whether MT regulates the vegetative growth and development of P. praeruptorum. Thus, the aim of the current study is to characterize the effects of different exogenous MT concentrations on the physiological functions, photosynthesis, antioxidant systems, hormone induction, and coumarin synthesis of P. praeruptorum. Different MT concentrations exert distinct regulatory effects on P. praeruptorum growth and the expression of genes related to coumarin synthesis. Treatment of P. praeruptorum with low concentrations of MT increases photosynthesis and leaf growth compared to the control, while high concentrations reduce root vitality and elongation and decrease the expression of photosynthetic system genes. Low concentrations of MT also significantly increase antioxidant enzyme activity and photosynthetic pigment content and modulate the levels of IAA, gibberellic acid, salicylic acid, jasmonic acid, abscisic acid, and endogenous MT. Moreover, MT increases the activity of the MT synthesis enzymes tryptophan decarboxylase, tryptophan hydroxylase, tryptamine-5-hydroxylase, serotonin N-acetyltransferase, acetylserotonin O-methyltransferase, and caffeic acid O-methyltransferase, and promotes the accumulation of isoscopoletin, scopoletin, peucedanocoumarin II, praeruptorin A, praeruptorin B, and praeruptorin E. MT also upregulates most genes associated with coumarin synthesis, including PAL1, C4H, 4CL-3, C3H-1, F6H-1, CCoAMT, OMT-1, CYP71AJ1, CYP84A1-1, S8H-1, PT-1, and COSY-1. These findings demonstrate that MT may improve P. praeruptorum growth and development while promoting the synthesis of coumarin components.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
期刊最新文献
Light Environment of Arctic Solstices is Coupled With Melatonin Phase-Amplitude Changes and Decline of Metabolic Health. Melatonin, an Antitumor Necrosis Factor Therapy. Melatonin Alleviates Circadian Rhythm Disruption-Induced Enhanced Luteinizing Hormone Pulse Frequency and Ovarian Dysfunction. Relating Photoperiod and Outdoor Temperature With Sleep Architecture in Patients With Neuropsychiatric Sleep Disorders. Skeletal Phenotyping of Period-1-Deficient Melatonin-Proficient Mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1