Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation.

IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biometals Pub Date : 2024-12-23 DOI:10.1007/s10534-024-00655-5
Indu Sindhu, Anshul Singh
{"title":"Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation.","authors":"Indu Sindhu, Anshul Singh","doi":"10.1007/s10534-024-00655-5","DOIUrl":null,"url":null,"abstract":"<p><p>The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations. The crystalline size of ligand was 36.67 nm and for the metal complexes it varies from 22.43 to 49.21 nm. To assess the biological effectiveness of these compounds, molecular docking studies were emanated. The docking binding studies were established through the interaction of metal complexes with human cancer protein, such as 3W2S (ovarian cancer) and 4ZVM (breast cancer). The results exemplified that the complexes are more efficient towards ovarian cancer (3W2S) in contrast to breast cancer (4ZVM) while among complexes, the nickel acetate (- 7.0 kcal/mol) and copper acetate (- 7.9 kcal/mol) complex were more efficient towards 4ZVM and 3W2S receptors respectively. Additionally, DNA binding studies against 1BNA receptor protein was examined from docking evaluations and the finding concludes the highest efficiency of nickel (- 8.1 kcal/mol) complexes. Further, a number of bacterial and fungal strains have been implemented in antimicrobial examinations to assess the compounds effectualness. The results untangled the extreme potential of copper nitrate (0.0051-0.0102 µmol/mL) and copper acetate (0.0051-0.0103 µmol/mL) complexes against all bacterial and fungal strains except for S. aureus in which nickel acetate proved out to be highly competent.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00655-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Schiff base metal complexes containing the transition metal ions Co(II), Ni(II) and Cu(II) were synthesized using their nitrate and acetate salts. An octahedral environment encircling metal complexes has been demonstrated by the findings of multiple spectroscopic approaches that were employed to demonstrate the structure of the metal complexes. The Coats-Redfern method of thermal analysis was employed to carry out the kinetic and thermodynamic calculations. The crystalline size of ligand was 36.67 nm and for the metal complexes it varies from 22.43 to 49.21 nm. To assess the biological effectiveness of these compounds, molecular docking studies were emanated. The docking binding studies were established through the interaction of metal complexes with human cancer protein, such as 3W2S (ovarian cancer) and 4ZVM (breast cancer). The results exemplified that the complexes are more efficient towards ovarian cancer (3W2S) in contrast to breast cancer (4ZVM) while among complexes, the nickel acetate (- 7.0 kcal/mol) and copper acetate (- 7.9 kcal/mol) complex were more efficient towards 4ZVM and 3W2S receptors respectively. Additionally, DNA binding studies against 1BNA receptor protein was examined from docking evaluations and the finding concludes the highest efficiency of nickel (- 8.1 kcal/mol) complexes. Further, a number of bacterial and fungal strains have been implemented in antimicrobial examinations to assess the compounds effectualness. The results untangled the extreme potential of copper nitrate (0.0051-0.0102 µmol/mL) and copper acetate (0.0051-0.0103 µmol/mL) complexes against all bacterial and fungal strains except for S. aureus in which nickel acetate proved out to be highly competent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometals
Biometals 生物-生化与分子生物学
CiteScore
5.90
自引率
8.60%
发文量
111
审稿时长
3 months
期刊介绍: BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of: - metal ions - metal chelates, - siderophores, - metal-containing proteins - biominerals in all biosystems. - BioMetals rapidly publishes original articles and reviews. BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.
期刊最新文献
Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation. Copper induced augmentation of antibiotic resistance in Acinetobacter baumannii MCC 3114. Chromium-histidine complex enhances reproductive physiology and development in Drosophila melanogaster by modulating oxidative stress. Fluorescent superparamagnetic magnetite-silica nanocomposites as carriers of a platinum diimine complex for photodynamic therapy. Study of plasma essential element concentrations to explore markers of acute myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1