Recent developments in microfluidic passive separation to enable purification of platelets for transfusion.

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2024-12-17 eCollection Date: 2024-12-01 DOI:10.1063/5.0226060
Mai T P Dinh, Mubasher Iqbal, Kumar Abhishek, Fong W Lam, Sergey S Shevkoplyas
{"title":"Recent developments in microfluidic passive separation to enable purification of platelets for transfusion.","authors":"Mai T P Dinh, Mubasher Iqbal, Kumar Abhishek, Fong W Lam, Sergey S Shevkoplyas","doi":"10.1063/5.0226060","DOIUrl":null,"url":null,"abstract":"<p><p>Platelet transfusion is a lifesaving therapy intended to prevent and treat bleeding. However, in addition to platelets, a typical unit also contains a large volume of supernatant that accumulates multiple pro-inflammatory contaminants, including residual leukocytes, microaggregates, microparticles, antibodies, and cytokines. Infusion of this supernatant is responsible for virtually all adverse reactions to platelet transfusions. Conventional methods for removing residual leukocytes (leukoreduction) and reducing the volume of transfused supernatant (volume reduction) struggle to mitigate these risks holistically. Leukoreduction filters can remove leukocytes and microaggregates but fail to reduce supernatant volume, whereas centrifugation can reduce volume, but it is ineffective against larger contaminants and damages platelets. Additionally, platelet purification based on these methods is often too logistically complex, time-consuming, and labor-intensive to implement routinely. Emerging microfluidic technologies offer promising alternatives through passive separation mechanisms that enable cell separation with minimal damage and drastically reduced instrumentation size and facility requirements. This review examines recent innovations in microfluidic cell separation that can be used for leukoreduction and volume reduction of platelets. It begins by defining the performance requirements that any separation method must meet to successfully replace conventional methods currently used to perform these tasks. Standard performance metrics are described, including leukocyte depletion efficiency, degree of volume reduction, processing throughput, and platelet recovery. Finally, the review outlines the primary challenges that must be overcome to enable simple-to-use, disposable microfluidic devices capable of both reducing the platelet unit volume and removing pro-inflammatory contaminants, while preserving most functional platelets for transfusion.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"18 6","pages":"061504"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Platelet transfusion is a lifesaving therapy intended to prevent and treat bleeding. However, in addition to platelets, a typical unit also contains a large volume of supernatant that accumulates multiple pro-inflammatory contaminants, including residual leukocytes, microaggregates, microparticles, antibodies, and cytokines. Infusion of this supernatant is responsible for virtually all adverse reactions to platelet transfusions. Conventional methods for removing residual leukocytes (leukoreduction) and reducing the volume of transfused supernatant (volume reduction) struggle to mitigate these risks holistically. Leukoreduction filters can remove leukocytes and microaggregates but fail to reduce supernatant volume, whereas centrifugation can reduce volume, but it is ineffective against larger contaminants and damages platelets. Additionally, platelet purification based on these methods is often too logistically complex, time-consuming, and labor-intensive to implement routinely. Emerging microfluidic technologies offer promising alternatives through passive separation mechanisms that enable cell separation with minimal damage and drastically reduced instrumentation size and facility requirements. This review examines recent innovations in microfluidic cell separation that can be used for leukoreduction and volume reduction of platelets. It begins by defining the performance requirements that any separation method must meet to successfully replace conventional methods currently used to perform these tasks. Standard performance metrics are described, including leukocyte depletion efficiency, degree of volume reduction, processing throughput, and platelet recovery. Finally, the review outlines the primary challenges that must be overcome to enable simple-to-use, disposable microfluidic devices capable of both reducing the platelet unit volume and removing pro-inflammatory contaminants, while preserving most functional platelets for transfusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于输血血小板纯化的微流控被动分离技术的最新进展。
血小板输注是一种旨在预防和治疗出血的救命疗法。然而,除了血小板外,一个典型的单位还含有大量的上清,积聚了多种促炎污染物,包括残留的白细胞、微聚集体、微颗粒、抗体和细胞因子。这种上清液的输注是造成血小板输注几乎所有不良反应的原因。传统的去除残留白细胞(白细胞减少)和减少输入上清液(体积减少)的方法难以从整体上减轻这些风险。白细胞诱导过滤器可以去除白细胞和微聚集体,但不能减少上清体积,而离心可以减少体积,但对较大的污染物无效,并损害血小板。此外,基于这些方法的血小板纯化通常在后勤上过于复杂、耗时和劳动密集,无法常规实施。新兴的微流体技术通过被动分离机制提供了有希望的替代方案,使细胞分离的损害最小,并大大减少了仪器尺寸和设施要求。本文综述了最近在微流控细胞分离方面的创新,可用于白细胞减少和血小板体积减少。它首先定义了任何分离方法必须满足的性能要求,以成功地取代当前用于执行这些任务的传统方法。描述了标准性能指标,包括白细胞消耗效率,体积减小程度,处理吞吐量和血小板回收率。最后,综述概述了必须克服的主要挑战,使使用简单的一次性微流体装置既能减少血小板单位体积,又能去除促炎污染物,同时保留大多数功能血小板用于输血。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Processing and inspection of high-pressure microfluidics systems: A review. Design of 3D printed chip to improve sensitivity of platelet adhesion through reinjection: Effect of alcohol consumption on platelet adhesion. Impact of dcEF on microRNA profiles in glioblastoma and exosomes using a novel microfluidic bioreactor. Bio-energy-powered microfluidic devices. Titrating chimeric antigen receptors on CAR T cells enabled by a microfluidic-based dosage-controlled intracellular mRNA delivery platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1