Sigma Metrics misconceptions and limitations.

IF 3.8 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY Clinical chemistry and laboratory medicine Pub Date : 2024-12-24 DOI:10.1515/cclm-2024-1380
Xincen Duan, Elvar Theodorsson, Wei Guo, Tony Badrick
{"title":"Sigma Metrics misconceptions and limitations.","authors":"Xincen Duan, Elvar Theodorsson, Wei Guo, Tony Badrick","doi":"10.1515/cclm-2024-1380","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This paper further explores the Sigma Metric (SM) and its application in clinical chemistry. It discusses the SM, assay stability, and control failure relationship.</p><p><strong>Content: </strong>: SM is not a valid measure of assay stability or the likelihood of failure. When an out-of-control event occurs for an assay with a higher SM value, the same QC rule will have greater power to detect error than assays with a lower SM value. Thus, it is easier to prevent errors from happening for higher SM assays. This rationale encourages using more frequent QC events and more QC samples for a QC scheme of a low SM assay or simply more QC cost for low SM assays. A laboratory can have a high-precision instrument that frequently fails and a low-precision instrument that hardly ever fails. Parvin's patient risk model presumes the bracketed continuous mode (BCM) testing workflow. If overlooked when designing QC schemes, this leads to the common misconception of the SM that one can save the cost of QC since assays with high SM require less frequent QC to ensure patient risk. There is no evidence that an assay's precision is correlated with its failure rate. Schmidt et al., in a series of papers, showed that an assay with a higher P<sub>f</sub> or shift in probability will have a higher expected number of unacceptable results. Incorporating P<sub>f</sub> into the QC design process presents significant challenges despite the proactive quality control (PQC) methodology.</p><p><strong>Summary: </strong>Unfortunately, TEa Six Sigma, as widely practiced in Clinical Chemistry, is not based on classical Six Sigma mathematical statistics. Classical Six Sigma would facilitate comparing results across activities where the principles of Six Sigma are employed.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-1380","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This paper further explores the Sigma Metric (SM) and its application in clinical chemistry. It discusses the SM, assay stability, and control failure relationship.

Content: : SM is not a valid measure of assay stability or the likelihood of failure. When an out-of-control event occurs for an assay with a higher SM value, the same QC rule will have greater power to detect error than assays with a lower SM value. Thus, it is easier to prevent errors from happening for higher SM assays. This rationale encourages using more frequent QC events and more QC samples for a QC scheme of a low SM assay or simply more QC cost for low SM assays. A laboratory can have a high-precision instrument that frequently fails and a low-precision instrument that hardly ever fails. Parvin's patient risk model presumes the bracketed continuous mode (BCM) testing workflow. If overlooked when designing QC schemes, this leads to the common misconception of the SM that one can save the cost of QC since assays with high SM require less frequent QC to ensure patient risk. There is no evidence that an assay's precision is correlated with its failure rate. Schmidt et al., in a series of papers, showed that an assay with a higher Pf or shift in probability will have a higher expected number of unacceptable results. Incorporating Pf into the QC design process presents significant challenges despite the proactive quality control (PQC) methodology.

Summary: Unfortunately, TEa Six Sigma, as widely practiced in Clinical Chemistry, is not based on classical Six Sigma mathematical statistics. Classical Six Sigma would facilitate comparing results across activities where the principles of Six Sigma are employed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical chemistry and laboratory medicine
Clinical chemistry and laboratory medicine 医学-医学实验技术
CiteScore
11.30
自引率
16.20%
发文量
306
审稿时长
3 months
期刊介绍: Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically. CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France). Topics: - clinical biochemistry - clinical genomics and molecular biology - clinical haematology and coagulation - clinical immunology and autoimmunity - clinical microbiology - drug monitoring and analysis - evaluation of diagnostic biomarkers - disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes) - new reagents, instrumentation and technologies - new methodologies - reference materials and methods - reference values and decision limits - quality and safety in laboratory medicine - translational laboratory medicine - clinical metrology Follow @cclm_degruyter on Twitter!
期刊最新文献
Reviewer Acknowledgment. Sigma Metrics misconceptions and limitations. A promising new direct immunoassay for urinary free cortisol determination. Evaluation of performance in preanalytical phase EQA: can laboratories mitigate common pitfalls? Current trends and future projections in the clinical laboratory test market: implications for resource management and strategic planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1