An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2024-12-21 DOI:10.1016/j.cub.2024.11.042
Vladislav Ayzenberg, Chenjie Song, Michael J Arcaro
{"title":"An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate.","authors":"Vladislav Ayzenberg, Chenjie Song, Michael J Arcaro","doi":"10.1016/j.cub.2024.11.042","DOIUrl":null,"url":null,"abstract":"<p><p>The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision. To address this gap, we investigated the organization of pulvino-cortical connections in human neonates using probabilistic tractography analyses on diffusion imaging data. Our analyses identified white matter pathways between the pulvinar and areas across occipital, ventral, lateral, and dorsal visual cortices at birth. These pathways exhibited specificity in their connections within the pulvinar, reflecting both an intra-areal retinotopic organization and a hierarchical structure across areas of visual cortical pathways. This organization suggests that even at birth, the pulvinar could facilitate detailed processing of sensory information and communication between distinct processing pathways. Comparative analyses revealed that while the large-scale organization of pulvino-cortical connectivity in neonates mirrored that of adults, connectivity with the ventral visual cortex was less mature than other cortical pathways, consistent with the protracted development of the visual recognition pathway. These findings advance our understanding of the developmental trajectory of thalamocortical connections and provide a framework for how subcortical structures may support early perceptual abilities and scaffold the development of cortex.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.042","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision. To address this gap, we investigated the organization of pulvino-cortical connections in human neonates using probabilistic tractography analyses on diffusion imaging data. Our analyses identified white matter pathways between the pulvinar and areas across occipital, ventral, lateral, and dorsal visual cortices at birth. These pathways exhibited specificity in their connections within the pulvinar, reflecting both an intra-areal retinotopic organization and a hierarchical structure across areas of visual cortical pathways. This organization suggests that even at birth, the pulvinar could facilitate detailed processing of sensory information and communication between distinct processing pathways. Comparative analyses revealed that while the large-scale organization of pulvino-cortical connectivity in neonates mirrored that of adults, connectivity with the ventral visual cortex was less mature than other cortical pathways, consistent with the protracted development of the visual recognition pathway. These findings advance our understanding of the developmental trajectory of thalamocortical connections and provide a framework for how subcortical structures may support early perceptual abilities and scaffold the development of cortex.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate. Days-old zebrafish rapidly learn to recognize threatening agents through noradrenergic and forebrain circuits. A recurrent neural circuit in Drosophila temporally sharpens visual inputs. The Fat-Dachsous planar polarity pathway competes with hinge contraction to orient polarized cell behaviors during Drosophila wing morphogenesis. Carbon dioxide shapes parasite-host interactions in a human-infective nematode.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1