Yuanyuan Peng , Xingyu Yang , Yafeng Liu , Jiawei Zhou , Jianqiang Guo , Bingfeng Ma , Ying Bai , Jing Wu , Dong Hu
{"title":"The regulation of the cell cycle and epithelial-mesenchymal transition through FUCA2/GGH signaling promotes the progression of lung adenocarcinoma","authors":"Yuanyuan Peng , Xingyu Yang , Yafeng Liu , Jiawei Zhou , Jianqiang Guo , Bingfeng Ma , Ying Bai , Jing Wu , Dong Hu","doi":"10.1016/j.gene.2024.149183","DOIUrl":null,"url":null,"abstract":"<div><div>The development of lung adenocarcinoma (LUAD) is intricately linked with cell cycle regulation and epithelial-mesenchymal transition (EMT). Our study, leveraging bioinformatics and database analysis, identified FUCA2 as a key gene influencing the prognosis and progression of LUAD. We observed that FUCA2 is highly expressed in LUAD and correlates with poor outcomes. Functionally, we assessed the role of this gene through cell cloning, scratch assays, transwell migration, and western blotting, revealing that FUCA2 knockdown significantly inhibits tumor cell proliferation and migration, downregulates the expression of cell cycle and EMT-related proteins, and markedly reduces tumor burden. Mechanistically, pathway enrichment analysis identified GGH as a downstream target of FUCA2. Knockdown of GGH similarly inhibits the proliferation, migration, and cell cycle progression of LUAD cells. FUCA2 upregulates GGH to modulate cell cycle and EMT in LUAD. Collectively, our findings indicate that the FUCA2/GGH axis promotes LUAD progression by regulating cell cycle and EMT.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"939 ","pages":"Article 149183"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111924010643","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of lung adenocarcinoma (LUAD) is intricately linked with cell cycle regulation and epithelial-mesenchymal transition (EMT). Our study, leveraging bioinformatics and database analysis, identified FUCA2 as a key gene influencing the prognosis and progression of LUAD. We observed that FUCA2 is highly expressed in LUAD and correlates with poor outcomes. Functionally, we assessed the role of this gene through cell cloning, scratch assays, transwell migration, and western blotting, revealing that FUCA2 knockdown significantly inhibits tumor cell proliferation and migration, downregulates the expression of cell cycle and EMT-related proteins, and markedly reduces tumor burden. Mechanistically, pathway enrichment analysis identified GGH as a downstream target of FUCA2. Knockdown of GGH similarly inhibits the proliferation, migration, and cell cycle progression of LUAD cells. FUCA2 upregulates GGH to modulate cell cycle and EMT in LUAD. Collectively, our findings indicate that the FUCA2/GGH axis promotes LUAD progression by regulating cell cycle and EMT.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.