Oral cancer (OC) has become increasingly prevalent in recent years, making it one of the most often occurring types of cancer in patients. The clinical identification of OC is usually a time-consuming procedure, and the outlook for individuals with OC is generally unfavorable, as no particular biomarkers have been established to far. The main risk factors linked to OC are high levels of tobacco and alcohol intake, together with a reduced occurrence of viral infections, such as human papillomavirus. Furthermore, there is evidence suggesting that genetic characteristics that can be passed down from parents to offspring play a role in increasing the likelihood of getting ovarian cancer. MicroRNAs (miRNAs) are brief RNA molecules that do not code for proteins and have the ability to either repress or promote the growth of tumors during cancer development. They have been discovered to control multiple signaling pathways within cells, and their abnormal regulation has been demonstrated to be crucial in initiating and furthering the development of cancer. Additionally, they have the ability to either facilitate or impede the entire multi-stage process of cancer metastasis, including epithelial-mesenchymal transition (EMT), migration, and invasion, by selectively targeting essential genes involved in these pathways. Several microRNAs have the ability to regulate gene expression through various ways. In addition, like other types of cancer, OC has shown alterations in the expression of miRNAs, and certain miRNAs may have the ability to be used for diagnosis and treatment. The investigation of these miRNA could perhaps result in advancements in the specified instances of OC.