Reverse-engineering the Venus figurines: An eco-life-course hypothesis for the aetiology of obesity in the Palaeolithic.

IF 3.3 3区 医学 Q2 EVOLUTIONARY BIOLOGY Evolution, Medicine, and Public Health Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI:10.1093/emph/eoae031
Jonathan C K Wells, Frank L'Engle Williams, Gernot Desoye
{"title":"Reverse-engineering the Venus figurines: An eco-life-course hypothesis for the aetiology of obesity in the Palaeolithic.","authors":"Jonathan C K Wells, Frank L'Engle Williams, Gernot Desoye","doi":"10.1093/emph/eoae031","DOIUrl":null,"url":null,"abstract":"<p><p>Evolutionary perspectives on obesity have been dominated by genetic frameworks, but plastic responses are also central to its aetiology. While often considered a relatively modern phenomenon, obesity was recorded during the Palaeolithic through small statuettes of the female form (Venus figurines). Even if the phenotype was rare, these statuettes indicate that some women achieved large body sizes during the last glacial maximum, a period of nutritional stress. To explore this paradox, we develop an eco-life-course conceptual framework that integrates the effects of dietary transitions with intergenerational biological mechanisms. We assume that Palaeolithic populations exposed to glaciations had high lean mass and high dietary protein requirements. We draw on the protein leverage hypothesis, which posits that low-protein diets drive overconsumption of energy to satisfy protein needs. We review evidence for an increasing contribution of plant foods to diets as the last glacial maximum occurred, assumed to reduce dietary protein content. We consider physiological mechanisms through which maternal overweight impacts the obesity susceptibility of the offspring during pregnancy. Integrating this evidence, we suggest that the last glacial maximum decreased dietary protein content and drove protein leverage, increasing body weight in a process that amplified across generations. Through the interaction of these mechanisms with environmental change, obesity could have developed among women with susceptible genotypes, reflecting broader trade-offs between linear growth and adiposity and shifts in the population distribution of weight. Our approach may stimulate bioarchaeologists and paleoanthropologists to examine paleo-obesity in greater detail and to draw upon the tenets of human biology to interpret evidence.</p>","PeriodicalId":12156,"journal":{"name":"Evolution, Medicine, and Public Health","volume":"12 1","pages":"262-276"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution, Medicine, and Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/emph/eoae031","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary perspectives on obesity have been dominated by genetic frameworks, but plastic responses are also central to its aetiology. While often considered a relatively modern phenomenon, obesity was recorded during the Palaeolithic through small statuettes of the female form (Venus figurines). Even if the phenotype was rare, these statuettes indicate that some women achieved large body sizes during the last glacial maximum, a period of nutritional stress. To explore this paradox, we develop an eco-life-course conceptual framework that integrates the effects of dietary transitions with intergenerational biological mechanisms. We assume that Palaeolithic populations exposed to glaciations had high lean mass and high dietary protein requirements. We draw on the protein leverage hypothesis, which posits that low-protein diets drive overconsumption of energy to satisfy protein needs. We review evidence for an increasing contribution of plant foods to diets as the last glacial maximum occurred, assumed to reduce dietary protein content. We consider physiological mechanisms through which maternal overweight impacts the obesity susceptibility of the offspring during pregnancy. Integrating this evidence, we suggest that the last glacial maximum decreased dietary protein content and drove protein leverage, increasing body weight in a process that amplified across generations. Through the interaction of these mechanisms with environmental change, obesity could have developed among women with susceptible genotypes, reflecting broader trade-offs between linear growth and adiposity and shifts in the population distribution of weight. Our approach may stimulate bioarchaeologists and paleoanthropologists to examine paleo-obesity in greater detail and to draw upon the tenets of human biology to interpret evidence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution, Medicine, and Public Health
Evolution, Medicine, and Public Health Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
5.40
自引率
2.70%
发文量
37
审稿时长
8 weeks
期刊介绍: About the Journal Founded by Stephen Stearns in 2013, Evolution, Medicine, and Public Health is an open access journal that publishes original, rigorous applications of evolutionary science to issues in medicine and public health. It aims to connect evolutionary biology with the health sciences to produce insights that may reduce suffering and save lives. Because evolutionary biology is a basic science that reaches across many disciplines, this journal is open to contributions on a broad range of topics.
期刊最新文献
Iron nutrition and COVID-19 among Nigerian healthcare workers. Evolutionary mismatch in emotional support during childbirth: Lessons from the COVID-19 pandemic. Towards a new therapeutic approach based on selection for function in tumors: response to Dr. Mesut Tez. Reverse-engineering the Venus figurines: An eco-life-course hypothesis for the aetiology of obesity in the Palaeolithic. Survival of quick problem solver!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1