Evaluation of Soil Antagonism against the White Root Rot Fungus Rosellinia necatrix and Pathogen Mycosphere Communities in Biochar-amended Soil.

IF 2.1 4区 环境科学与生态学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbes and Environments Pub Date : 2024-01-01 DOI:10.1264/jsme2.ME24060
Yong Guo, Sachie Horii, Satoko Kanematsu
{"title":"Evaluation of Soil Antagonism against the White Root Rot Fungus Rosellinia necatrix and Pathogen Mycosphere Communities in Biochar-amended Soil.","authors":"Yong Guo, Sachie Horii, Satoko Kanematsu","doi":"10.1264/jsme2.ME24060","DOIUrl":null,"url":null,"abstract":"<p><p>White root rot disease caused by Rosellinia necatrix is a growing issue in orchards, and biochar pyrolyzed from the pruned branch residues of fruit trees has potential as a soil amendment agent with a number of benefits, such as long-term carbon sequestration. However, the effects of pruned branch biochar on white root rot disease remain unclear. Therefore, we compared direct antagonism against R. necatrix between soils with and without pruned pear branch biochar using a toothpick method and then linked soil physicochemical properties and microbial communities with soil antagonism. The results obtained showed that soil antagonism against the pathogen, that is, the extinction zone of R. necatrix in mycelial toothpicks, decreased in soils amended with 20% (v/v) pruned branch biochar. Soil pH was neutralized and aeration was promoted by the biochar amendment, which may be favorable for pathogen growth. An investigation of microbial communities surrounding R. necatrix mycelia indicated that antagonistic fungi affiliated with Chaetomiaceae and Trichoderma were selectively excluded from the mycosphere community in biochar-amended soil. Therefore, the enrichment of these indigenous antagonistic fungi may be important for controlling R. necatrix. Based on the present results, we do not recommend the application of pruned branch biochar to the soil area associated with the roots of fruit trees in order to avoid increasing the risk of white root rot in orchards.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME24060","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

White root rot disease caused by Rosellinia necatrix is a growing issue in orchards, and biochar pyrolyzed from the pruned branch residues of fruit trees has potential as a soil amendment agent with a number of benefits, such as long-term carbon sequestration. However, the effects of pruned branch biochar on white root rot disease remain unclear. Therefore, we compared direct antagonism against R. necatrix between soils with and without pruned pear branch biochar using a toothpick method and then linked soil physicochemical properties and microbial communities with soil antagonism. The results obtained showed that soil antagonism against the pathogen, that is, the extinction zone of R. necatrix in mycelial toothpicks, decreased in soils amended with 20% (v/v) pruned branch biochar. Soil pH was neutralized and aeration was promoted by the biochar amendment, which may be favorable for pathogen growth. An investigation of microbial communities surrounding R. necatrix mycelia indicated that antagonistic fungi affiliated with Chaetomiaceae and Trichoderma were selectively excluded from the mycosphere community in biochar-amended soil. Therefore, the enrichment of these indigenous antagonistic fungi may be important for controlling R. necatrix. Based on the present results, we do not recommend the application of pruned branch biochar to the soil area associated with the roots of fruit trees in order to avoid increasing the risk of white root rot in orchards.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物炭改良土壤对白根腐菌rossellinia necatrix和病原菌球群落拮抗作用的评价
白腐病是果园中一个日益严重的问题,而由果树修剪后的残枝热解的生物炭有潜力作为土壤改良剂,具有长期固碳等诸多好处。然而,修剪后的枝炭对白腐病的防治效果尚不清楚。为此,本研究采用牙签法比较了梨枝修剪后的生物炭与未修剪后的梨枝修剪后的生物炭在土壤中的直接拮抗作用,并将土壤理化性质和微生物群落与土壤拮抗作用联系起来。结果表明,土壤对该病菌的拮抗作用,即菌丝牙签内的红丝霉灭灭区,在20% (v/v)修剪过的生物炭处理下有所降低。生物炭能中和土壤pH,促进通气,有利于病原菌生长。对红毛菌菌丝周围微生物群落的研究表明,在生物炭处理的土壤中,毛菌科和木霉属的拮抗真菌被选择性地排除在菌圈群落之外。因此,这些拮抗真菌的富集可能对控制红圆霉具有重要意义。根据目前的研究结果,我们不建议在果树根系相关的土壤区域施用修剪过的树枝生物炭,以避免增加果园白根腐病的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbes and Environments
Microbes and Environments 生物-生物工程与应用微生物
CiteScore
4.10
自引率
13.60%
发文量
66
审稿时长
3 months
期刊介绍: Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.
期刊最新文献
Size Distribution and Pathogenic Potential of Culturable Airborne Clostridium spp. in a Suburb of Toyama City, Japan. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Gustatory Responsiveness of Honey Bees Colonized with a Defined or Conventional Gut Microbiota. DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics. Global Distribution and Diversity of Marine Parmales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1