Fluoxetine inhibited RANKL-induced osteoclastic differentiation in vitro.

IF 1.7 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL Open Medicine Pub Date : 2024-12-17 eCollection Date: 2024-01-01 DOI:10.1515/med-2024-1094
Jing-Wen Zhang, Fang-Bing Zhao, Bing'er Ma, Xiao-Qing Shen, Yuan-Ming Geng
{"title":"Fluoxetine inhibited RANKL-induced osteoclastic differentiation <i>in vitro</i>.","authors":"Jing-Wen Zhang, Fang-Bing Zhao, Bing'er Ma, Xiao-Qing Shen, Yuan-Ming Geng","doi":"10.1515/med-2024-1094","DOIUrl":null,"url":null,"abstract":"<p><p>Selective serotonin reuptake inhibitor correlates with decreased bone mineral density and impedes orthodontic tooth movement. The present study aimed to examine the effects of fluoxetine on osteoclast differentiation and function. Human peripheral blood mononuclear cells (hPBMCs) and murine RAW264.7 cells were cultured with RANKL to stimulate osteoclast differentiation. The resulting multinucleated cells displayed characteristics of mature osteoclasts. Fluoxetine at 0.01-1 μM did not impact cellular viability or oxidative stress. However, 10 μM fluoxetine significantly reduced clonal growth, cell viability, and increased cytotoxicity and lipid peroxidation in RAW 264.7 cells. Further, application of 0.1 μM fluoxetine potently suppressed osteoclast differentiation of both RAW264.7 and hPBMCs, with reduced osteoclast numbers and downregulation of osteoclastic genes matrix metalloproteinase-9, cathepsin K, and integrin β3 at mRNA and protein levels. Fluoxetine also disrupted F-actin ring formation essential for osteoclast resorptive function. Mechanistically, fluoxetine inhibited NF-kB signaling by reducing phosphorylation of pathway members IκBα and p65, preventing IκBα degradation and blocking p65 nuclear translocation. In conclusion, this study demonstrates fluoxetine suppressing osteoclast differentiation in association with disrupting NF-kB activation, providing insight into orthodontic treatment planning for patients taking fluoxetine.</p>","PeriodicalId":19715,"journal":{"name":"Open Medicine","volume":"19 1","pages":"20241094"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/med-2024-1094","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Selective serotonin reuptake inhibitor correlates with decreased bone mineral density and impedes orthodontic tooth movement. The present study aimed to examine the effects of fluoxetine on osteoclast differentiation and function. Human peripheral blood mononuclear cells (hPBMCs) and murine RAW264.7 cells were cultured with RANKL to stimulate osteoclast differentiation. The resulting multinucleated cells displayed characteristics of mature osteoclasts. Fluoxetine at 0.01-1 μM did not impact cellular viability or oxidative stress. However, 10 μM fluoxetine significantly reduced clonal growth, cell viability, and increased cytotoxicity and lipid peroxidation in RAW 264.7 cells. Further, application of 0.1 μM fluoxetine potently suppressed osteoclast differentiation of both RAW264.7 and hPBMCs, with reduced osteoclast numbers and downregulation of osteoclastic genes matrix metalloproteinase-9, cathepsin K, and integrin β3 at mRNA and protein levels. Fluoxetine also disrupted F-actin ring formation essential for osteoclast resorptive function. Mechanistically, fluoxetine inhibited NF-kB signaling by reducing phosphorylation of pathway members IκBα and p65, preventing IκBα degradation and blocking p65 nuclear translocation. In conclusion, this study demonstrates fluoxetine suppressing osteoclast differentiation in association with disrupting NF-kB activation, providing insight into orthodontic treatment planning for patients taking fluoxetine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Medicine
Open Medicine Medicine-General Medicine
CiteScore
3.00
自引率
0.00%
发文量
153
审稿时长
20 weeks
期刊介绍: Open Medicine is an open access journal that provides users with free, instant, and continued access to all content worldwide. The primary goal of the journal has always been a focus on maintaining the high quality of its published content. Its mission is to facilitate the exchange of ideas between medical science researchers from different countries. Papers connected to all fields of medicine and public health are welcomed. Open Medicine accepts submissions of research articles, reviews, case reports, letters to editor and book reviews.
期刊最新文献
Detection of serum FOXM1 and IGF2 in patients with ARDS and their correlation with disease and prognosis. Fluoxetine inhibited RANKL-induced osteoclastic differentiation in vitro. The potential risk factors of postoperative cognitive dysfunction for endovascular therapy in acute ischemic stroke with general anesthesia. Carboplatin combined with arsenic trioxide versus carboplatin combined with docetaxel treatment for LACC: A randomized, open-label, phase II clinical study. Iron in ventricular remodeling and aneurysms post-myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1