Impact of Chronic Intermittent Hypoxia on Cognitive Function and Hippocampal Neurons in Mice: A Study of Inflammatory and Oxidative Stress Pathways.

IF 3 2区 医学 Q2 CLINICAL NEUROLOGY Nature and Science of Sleep Pub Date : 2024-12-16 eCollection Date: 2024-01-01 DOI:10.2147/NSS.S489232
Kai Zhang, Dandi Ma, Yunxiao Wu, Zhifei Xu
{"title":"Impact of Chronic Intermittent Hypoxia on Cognitive Function and Hippocampal Neurons in Mice: A Study of Inflammatory and Oxidative Stress Pathways.","authors":"Kai Zhang, Dandi Ma, Yunxiao Wu, Zhifei Xu","doi":"10.2147/NSS.S489232","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Chronic intermittent hypoxia (CIH) is considered one of the main pathophysiological mechanisms of obstructive sleep apnea (OSA). CIH can further lead to cognitive dysfunction by inducing processes such as neuroinflammation and oxidative stress. The hippocampus is primarily associated with cognitive functions such as learning and memory. This study aimed to explore the effects of CIH on cognitive function and hippocampal neurons in mice and to reveal its potential molecular mechanisms.</p><p><strong>Methods: </strong>SPF-grade C57BL/6J mice (n=36) were selected as subjects and divided into control, mild CIH, and severe CIH groups (12 mice per group). Cognitive function was assessed using the Morris water maze test, and hippocampal neuron numbers and morphological changes were observed using HE staining and Nissl staining. Additionally, differential genes and pathways were revealed through RNA sequencing (RNA-seq) and bioinformatics analysis. We examined oxidative stress-related biochemical markers in the hippocampal tissue and used Western Blot to verify changes in the expression of potential key genes. Statistical analyses were performed using ANOVA and post hoc tests to ensure robust comparisons between groups.</p><p><strong>Results: </strong>CIH mice exhibited significant cognitive impairment, including decreased learning and memory abilities. The severe CIH group had a longer escape latency compared to the mild CIH group (p < 0.001) and the control group (p < 0.01), while the mild CIH group took longer than the control group (p < 0.01). In the probe test, the severe CIH group showed a significant decrease in platform crossings (p < 0.01) and target quadrant dwell time (p < 0.05), while the mild CIH group exhibited a reduction in target quadrant dwell time (p < 0.05). Abnormal hippocampal neuron morphology was observed, with a significant reduction in hippocampal neurons (p < 0.05). RNA-seq analysis revealed numerous differentially expressed genes, mainly enriched in biological processes such as inflammation and oxidative stress, as well as multiple signaling pathways. Specifically, downregulated LepR, SIRT1, and Nrf2 genes were found to exacerbate oxidative stress and neuroinflammation, impairing neuronal integrity and cognitive function. Further validation showed increased oxidative stress levels in hippocampal tissue and downregulation of key gene expression. Western blot analysis confirmed significantly reduced expression of LepR (p < 0.01), SIRT1 (p < 0.001), and Nrf2 (p < 0.001) in the severe CIH group.</p><p><strong>Conclusion: </strong>While oxidative stress and inflammation are well-established mechanisms in CIH-induced cognitive impairment, our study provides novel insights by identifying the specific roles of LepR, SIRT1, and Nrf2 in this process. The downregulation of these key genes suggests potential new targets for therapeutic intervention. Importantly, the differential expression patterns observed in varying degrees of hypoxia severity highlight the potential for tailored therapeutic strategies that modulate these pathways in response to the intensity of hypoxic exposure. These findings offer unique opportunities for developing targeted therapies aimed at mitigating CIH-related cognitive decline and neural damage. However, a key limitation of this study is the exclusive use of animal models, which may not fully replicate human pathophysiology. Further studies are needed to validate these findings in clinical settings and to explore the regulatory relationships between the key genes involved.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"16 ","pages":"2029-2043"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S489232","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Chronic intermittent hypoxia (CIH) is considered one of the main pathophysiological mechanisms of obstructive sleep apnea (OSA). CIH can further lead to cognitive dysfunction by inducing processes such as neuroinflammation and oxidative stress. The hippocampus is primarily associated with cognitive functions such as learning and memory. This study aimed to explore the effects of CIH on cognitive function and hippocampal neurons in mice and to reveal its potential molecular mechanisms.

Methods: SPF-grade C57BL/6J mice (n=36) were selected as subjects and divided into control, mild CIH, and severe CIH groups (12 mice per group). Cognitive function was assessed using the Morris water maze test, and hippocampal neuron numbers and morphological changes were observed using HE staining and Nissl staining. Additionally, differential genes and pathways were revealed through RNA sequencing (RNA-seq) and bioinformatics analysis. We examined oxidative stress-related biochemical markers in the hippocampal tissue and used Western Blot to verify changes in the expression of potential key genes. Statistical analyses were performed using ANOVA and post hoc tests to ensure robust comparisons between groups.

Results: CIH mice exhibited significant cognitive impairment, including decreased learning and memory abilities. The severe CIH group had a longer escape latency compared to the mild CIH group (p < 0.001) and the control group (p < 0.01), while the mild CIH group took longer than the control group (p < 0.01). In the probe test, the severe CIH group showed a significant decrease in platform crossings (p < 0.01) and target quadrant dwell time (p < 0.05), while the mild CIH group exhibited a reduction in target quadrant dwell time (p < 0.05). Abnormal hippocampal neuron morphology was observed, with a significant reduction in hippocampal neurons (p < 0.05). RNA-seq analysis revealed numerous differentially expressed genes, mainly enriched in biological processes such as inflammation and oxidative stress, as well as multiple signaling pathways. Specifically, downregulated LepR, SIRT1, and Nrf2 genes were found to exacerbate oxidative stress and neuroinflammation, impairing neuronal integrity and cognitive function. Further validation showed increased oxidative stress levels in hippocampal tissue and downregulation of key gene expression. Western blot analysis confirmed significantly reduced expression of LepR (p < 0.01), SIRT1 (p < 0.001), and Nrf2 (p < 0.001) in the severe CIH group.

Conclusion: While oxidative stress and inflammation are well-established mechanisms in CIH-induced cognitive impairment, our study provides novel insights by identifying the specific roles of LepR, SIRT1, and Nrf2 in this process. The downregulation of these key genes suggests potential new targets for therapeutic intervention. Importantly, the differential expression patterns observed in varying degrees of hypoxia severity highlight the potential for tailored therapeutic strategies that modulate these pathways in response to the intensity of hypoxic exposure. These findings offer unique opportunities for developing targeted therapies aimed at mitigating CIH-related cognitive decline and neural damage. However, a key limitation of this study is the exclusive use of animal models, which may not fully replicate human pathophysiology. Further studies are needed to validate these findings in clinical settings and to explore the regulatory relationships between the key genes involved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature and Science of Sleep
Nature and Science of Sleep Neuroscience-Behavioral Neuroscience
CiteScore
5.70
自引率
5.90%
发文量
245
审稿时长
16 weeks
期刊介绍: Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep. Specific topics covered in the journal include: The functions of sleep in humans and other animals Physiological and neurophysiological changes with sleep The genetics of sleep and sleep differences The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness Sleep changes with development and with age Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause) The science and nature of dreams Sleep disorders Impact of sleep and sleep disorders on health, daytime function and quality of life Sleep problems secondary to clinical disorders Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health) The microbiome and sleep Chronotherapy Impact of circadian rhythms on sleep, physiology, cognition and health Mechanisms controlling circadian rhythms, centrally and peripherally Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms Epigenetic markers of sleep or circadian disruption.
期刊最新文献
Fatigue and Pruritus Impact Sleep Quality in Hemodialysis Patients. Test-Retest Reliability of Epworth Sleepiness Scale Score in Patients with Untreated Obstructive Sleep Apnea. Association Between Nocturnal Hypoxemia Parameters and Coronary Microvascular Dysfunction: A Cross-Sectional Study. Feasibility of at-Home Sleep Monitoring in Adolescents with and without Concussion. Deep Learning-Based Quantification of Adenoid Hypertrophy and Its Correlation with Apnea-Hypopnea Index in Pediatric Obstructive Sleep Apnea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1