{"title":"Data-driven material modeling based on the Constitutive Relation Error.","authors":"Pierre Ladevèze, Ludovic Chamoin","doi":"10.1186/s40323-024-00279-x","DOIUrl":null,"url":null,"abstract":"<p><p>Prior to any numerical development, the paper objective is to answer first to a fundamental question: what is the mathematical form of the most general data-driven constitutive model for stable materials, taking maximum account of knowledge from physics and materials science? Here we restrict ourselves to elasto-(visco-)plastic materials under the small displacement assumption. The experimental data consists of full-field measurements from a family of tested mechanical structures. In this framework, a general data-driven approach is proposed to learn the constitutive model (in terms of thermodynamic potentials) from data. A key element that defines the proposed data-driven approach is a tool: the Constitutive Relation Error (CRE); the data-driven model is then the minimizer of the CRE. A notable aspect of this procedure is that it leads to quasi-explicit formulations of the optimal constitutive model. Eventually, a modified Constitutive Relation Error is introduced to take measurement noise into account.</p>","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"11 1","pages":"23"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655617/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-024-00279-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Prior to any numerical development, the paper objective is to answer first to a fundamental question: what is the mathematical form of the most general data-driven constitutive model for stable materials, taking maximum account of knowledge from physics and materials science? Here we restrict ourselves to elasto-(visco-)plastic materials under the small displacement assumption. The experimental data consists of full-field measurements from a family of tested mechanical structures. In this framework, a general data-driven approach is proposed to learn the constitutive model (in terms of thermodynamic potentials) from data. A key element that defines the proposed data-driven approach is a tool: the Constitutive Relation Error (CRE); the data-driven model is then the minimizer of the CRE. A notable aspect of this procedure is that it leads to quasi-explicit formulations of the optimal constitutive model. Eventually, a modified Constitutive Relation Error is introduced to take measurement noise into account.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.