Periyathambi Anushiya, Ravi Pavithra, Mani Poonkothai, Senthilvel Sanjupriya, Gunaseelan Vivekananth Geethamala, Ammapettai Varanavasu Swathilakshmi, Mohammad Khalid Al-Sadoon, Palanisamy Srinivasan
{"title":"Ecofriendly Synthesis of Nickel Oxide Nanoparticles From Fissidens Species and Its Biological Applications","authors":"Periyathambi Anushiya, Ravi Pavithra, Mani Poonkothai, Senthilvel Sanjupriya, Gunaseelan Vivekananth Geethamala, Ammapettai Varanavasu Swathilakshmi, Mohammad Khalid Al-Sadoon, Palanisamy Srinivasan","doi":"10.1002/bio.70065","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present study was performed to synthesize eco-friendly nickel oxide nanoparticles (NiONPs) from the aqueous extract of <i>Fissidens</i> species (FS) and explore its biological activities. Phytochemicals, namely, alkaloids, flavonoids, sterols, tannins, proteins, carbohydrates and phenols, were present in the aqueous extract of <i>Fissidens</i> sp. The UV–Vis and FT-IR analyses of FS-NiONPs revealed a prominent peak at 392 nm, along with functional groups that facilitate the formation of FS-NiONPs. XRD spectrum confirmed the crystalline nature and SEM with EDX depicted the irregular, aggregated clusters and purity of FS-NiONPs. The photocatalytic activity against RB94 was achieved within 20 min with maximum decolorization efficiency (93%). The experimental data of adsorption studies fitted well with Langmuir isotherm, showcasing the monolayer adsorption of RB94 through chemisorption process. The thermodynamic study revealed that the dye removal was spontaneous, feasible and endothermic in nature. The results of antimicrobial activity and phytotoxicity study revealed the potentiality of FS-NiONPs in clinical and agricultural applications. Hence, this study emphasizes the eco-friendly synthesis of FS-NiONPs and highlights its decolorization potential, antimicrobial activity and growth promoting properties.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70065","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was performed to synthesize eco-friendly nickel oxide nanoparticles (NiONPs) from the aqueous extract of Fissidens species (FS) and explore its biological activities. Phytochemicals, namely, alkaloids, flavonoids, sterols, tannins, proteins, carbohydrates and phenols, were present in the aqueous extract of Fissidens sp. The UV–Vis and FT-IR analyses of FS-NiONPs revealed a prominent peak at 392 nm, along with functional groups that facilitate the formation of FS-NiONPs. XRD spectrum confirmed the crystalline nature and SEM with EDX depicted the irregular, aggregated clusters and purity of FS-NiONPs. The photocatalytic activity against RB94 was achieved within 20 min with maximum decolorization efficiency (93%). The experimental data of adsorption studies fitted well with Langmuir isotherm, showcasing the monolayer adsorption of RB94 through chemisorption process. The thermodynamic study revealed that the dye removal was spontaneous, feasible and endothermic in nature. The results of antimicrobial activity and phytotoxicity study revealed the potentiality of FS-NiONPs in clinical and agricultural applications. Hence, this study emphasizes the eco-friendly synthesis of FS-NiONPs and highlights its decolorization potential, antimicrobial activity and growth promoting properties.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.