A Novel Multi-organ Male Model of Alcohol-induced Acute-on-chronic Liver Failure Reveals NET-mediated Hepatocellular Death, Which is Prevented by RIPK3 Inhibition
{"title":"A Novel Multi-organ Male Model of Alcohol-induced Acute-on-chronic Liver Failure Reveals NET-mediated Hepatocellular Death, Which is Prevented by RIPK3 Inhibition","authors":"Martí Ortega-Ribera , Yuan Zhuang , Mrigya Babuta , Veronika Brezani , Radhika S. Joshi , Zsuzsanna Zsengeller , Prashanth Thevkar Nagesh , Yanbo Wang , Roderick Bronson , Gyongyi Szabo","doi":"10.1016/j.jcmgh.2024.101446","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & Aims</h3><div>Alcohol abuse is the most frequent precipitating factor of acute-on-chronic liver failure (ACLF). We aimed at developing an alcohol-induced ACLF model and dissecting its underlying molecular mechanisms.</div></div><div><h3>Methods</h3><div>ACLF was triggered by a single alcohol binge (5 g/kg) in a bile duct ligation (BDL) liver fibrosis murine model. Liver, kidney, and brain tissues and behavior were assessed in mice. Livers from patients with sclerosing cholangitis with and without ACLF were also evaluated.</div></div><div><h3>Results</h3><div>In advanced fibrosis induced by BDL, an alcohol binge induced features of ACLF, including significant liver damage, systemic inflammation (increased endotoxin and pro-inflammatory cytokines), and hepatocyte dysfunction compared with BDL alone. ACLF was associated with extrahepatic manifestations, including increased blood urea nitrogen and creatinine, impaired coagulation, and features of encephalopathy. We discovered significantly increased neutrophil count and neutrophil extracellular traps (NETs) in the liver, kidney, and brain in murine ACLF. Livers from ACLF mice showed increased pyroptosis (gasdermin D) and necroptosis (receptor-interacting protein kinase 3 [RIPK3]), when compared with BDL. <em>In vitro</em>, cell-free NETs were induced by alcohol and/or bile acids and triggered pyro-/necroptotic death in hepatocytes. NETosis, pyroptosis, and RIPK3 activation were validated in human livers with ACLF. Moreover, pharmacological inhibition of necroptosis with a RIPK3 inhibitor-ameliorated inflammation, NETs, and liver fibrosis, improving multi-organ ACLF pathophysiology.</div></div><div><h3>Conclusions</h3><div>Our novel ACLF model triggered by alcohol binge mimics key features of pathophysiology and multi-organ impairment in human ACLF. Our results indicate that neutrophil infiltration and NETs contribute to hepatocyte cell death via pyroptosis and necroptosis in ACLF, identifying RIPK3 as a potential therapeutic target.</div></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"19 4","pages":"Article 101446"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352345X24002017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & Aims
Alcohol abuse is the most frequent precipitating factor of acute-on-chronic liver failure (ACLF). We aimed at developing an alcohol-induced ACLF model and dissecting its underlying molecular mechanisms.
Methods
ACLF was triggered by a single alcohol binge (5 g/kg) in a bile duct ligation (BDL) liver fibrosis murine model. Liver, kidney, and brain tissues and behavior were assessed in mice. Livers from patients with sclerosing cholangitis with and without ACLF were also evaluated.
Results
In advanced fibrosis induced by BDL, an alcohol binge induced features of ACLF, including significant liver damage, systemic inflammation (increased endotoxin and pro-inflammatory cytokines), and hepatocyte dysfunction compared with BDL alone. ACLF was associated with extrahepatic manifestations, including increased blood urea nitrogen and creatinine, impaired coagulation, and features of encephalopathy. We discovered significantly increased neutrophil count and neutrophil extracellular traps (NETs) in the liver, kidney, and brain in murine ACLF. Livers from ACLF mice showed increased pyroptosis (gasdermin D) and necroptosis (receptor-interacting protein kinase 3 [RIPK3]), when compared with BDL. In vitro, cell-free NETs were induced by alcohol and/or bile acids and triggered pyro-/necroptotic death in hepatocytes. NETosis, pyroptosis, and RIPK3 activation were validated in human livers with ACLF. Moreover, pharmacological inhibition of necroptosis with a RIPK3 inhibitor-ameliorated inflammation, NETs, and liver fibrosis, improving multi-organ ACLF pathophysiology.
Conclusions
Our novel ACLF model triggered by alcohol binge mimics key features of pathophysiology and multi-organ impairment in human ACLF. Our results indicate that neutrophil infiltration and NETs contribute to hepatocyte cell death via pyroptosis and necroptosis in ACLF, identifying RIPK3 as a potential therapeutic target.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.