Association between ambient temperatures and cardiovascular disease: A time series analysis using emergency ambulance dispatches in Chongqing, China, 2019-2021.
Yunyi An, DianGuo Xing, Saijuan Chen, Xinyue Wang, Xinyun Zhou, Yan Zhang
{"title":"Association between ambient temperatures and cardiovascular disease: A time series analysis using emergency ambulance dispatches in Chongqing, China, 2019-2021.","authors":"Yunyi An, DianGuo Xing, Saijuan Chen, Xinyue Wang, Xinyun Zhou, Yan Zhang","doi":"10.1016/j.healthplace.2024.103403","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular disease (CVD) is one of the leading causes of death globally. Yet, further research is required into the relationship between CVD and extreme environmental temperatures. This study aims to explore the association between the incidence of CVD and extreme temperatures, and also to identify susceptible subgroups within the population.</p><p><strong>Methods: </strong>We collected cardiovascular emergency ambulance dispatch (CEAD) records from Chongqing Emergency Dispatch Center in the main urban areas of Chongqing from 2019 to 2021. Then, we used distributed lag nonlinear modeling (DLNM) with a quasi-Poisson distribution to evaluate the association between extreme temperatures and CEADs. Susceptibility subgroups were identified by stratified analysis according to gender, age and initial diagnosis. Finally, the attribution analysis was used to calculate the scores and counts of CEADs caused by low and high temperatures.</p><p><strong>Results: </strong>Compared with the optimal temperature (23 °C), the cumulative lagged risk of total CEADs was increased under extreme low-temperature conditions (CRR: 1.732, 95% CI: [1.157, 2.593]), with the lagged effect lasting for 8 days. Under extreme high-temperature conditions, it decreased (CRR: 0.752, 95% CI: [0.611, 0.926]) and a protective effect was observed. Compared to the group under 60, those over 60 were more sensitive to temperature changes, showing a higher risk of disease with cold exposure (RR: 1.087, 95% CI: [1.021, 1.157]). In addition, a reduction in risk of disease was observed just one day after heat exposure. There were also gender differences in the elderly group: males showed longer lagged effects after cold exposure, while females had higher dispatch risk in cold weather and less heat adaptation in hot weather than males.</p><p><strong>Conclusion: </strong>Ambient temperature is significantly associated with the risk of CVD, with elderly patients, especially females, being a high-risk subgroup. Governments need to formulate localized health policies that address regional climate patterns and population vulnerabilities. As one of the famous \"Furnace Cities\", Chongqing's measures for coping with hot environments can serve as a reference. Nonetheless, improving our understanding and preparation for cold weather is also crucial. Public warning systems should be improved, and local heating strategies for vulnerable groups should be developed to minimize the negative risk of extreme cold temperatures to the public.</p>","PeriodicalId":94024,"journal":{"name":"Health & place","volume":"91 ","pages":"103403"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health & place","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.healthplace.2024.103403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiovascular disease (CVD) is one of the leading causes of death globally. Yet, further research is required into the relationship between CVD and extreme environmental temperatures. This study aims to explore the association between the incidence of CVD and extreme temperatures, and also to identify susceptible subgroups within the population.
Methods: We collected cardiovascular emergency ambulance dispatch (CEAD) records from Chongqing Emergency Dispatch Center in the main urban areas of Chongqing from 2019 to 2021. Then, we used distributed lag nonlinear modeling (DLNM) with a quasi-Poisson distribution to evaluate the association between extreme temperatures and CEADs. Susceptibility subgroups were identified by stratified analysis according to gender, age and initial diagnosis. Finally, the attribution analysis was used to calculate the scores and counts of CEADs caused by low and high temperatures.
Results: Compared with the optimal temperature (23 °C), the cumulative lagged risk of total CEADs was increased under extreme low-temperature conditions (CRR: 1.732, 95% CI: [1.157, 2.593]), with the lagged effect lasting for 8 days. Under extreme high-temperature conditions, it decreased (CRR: 0.752, 95% CI: [0.611, 0.926]) and a protective effect was observed. Compared to the group under 60, those over 60 were more sensitive to temperature changes, showing a higher risk of disease with cold exposure (RR: 1.087, 95% CI: [1.021, 1.157]). In addition, a reduction in risk of disease was observed just one day after heat exposure. There were also gender differences in the elderly group: males showed longer lagged effects after cold exposure, while females had higher dispatch risk in cold weather and less heat adaptation in hot weather than males.
Conclusion: Ambient temperature is significantly associated with the risk of CVD, with elderly patients, especially females, being a high-risk subgroup. Governments need to formulate localized health policies that address regional climate patterns and population vulnerabilities. As one of the famous "Furnace Cities", Chongqing's measures for coping with hot environments can serve as a reference. Nonetheless, improving our understanding and preparation for cold weather is also crucial. Public warning systems should be improved, and local heating strategies for vulnerable groups should be developed to minimize the negative risk of extreme cold temperatures to the public.