{"title":"The scent of habitat shift: Olfactory receptor evolution is associated with environmental transitions in turtles","authors":"Alejandro Ibáñez , Joan Garcia-Porta","doi":"10.1016/j.zool.2024.126236","DOIUrl":null,"url":null,"abstract":"<div><div>The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms. In this study, we used turtles, a group of vertebrates which inhabit many distinct environments, to explore whether functional olfactory gene receptor repertoires are correlated to habitat. We found that the proportion of class I vs class II functional olfactory receptor genes (used for waterborne odorant detection and volatile odorant detection, respectively) was closely linked to habitat. Fully terrestrial turtles had the largest proportion of class II functional receptor genes while marine turtles had a larger proportion of class I receptor genes. Freshwater turtles had more balanced numbers of class I and class II functional receptor genes, but showed a gradient of OR type proportions likely reflecting species-specific amphibious preferences. Interestingly, freshwater turtles had by far the largest number of functional OR genes compared to those in other habitats, challenging the hypothesis that secondary adaptions to water may have reduced OR repertoires in amniotes. Our study provides novel results which shed new light on the relationship between chemical communication and habitat.</div></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"168 ","pages":"Article 126236"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200624000953","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms. In this study, we used turtles, a group of vertebrates which inhabit many distinct environments, to explore whether functional olfactory gene receptor repertoires are correlated to habitat. We found that the proportion of class I vs class II functional olfactory receptor genes (used for waterborne odorant detection and volatile odorant detection, respectively) was closely linked to habitat. Fully terrestrial turtles had the largest proportion of class II functional receptor genes while marine turtles had a larger proportion of class I receptor genes. Freshwater turtles had more balanced numbers of class I and class II functional receptor genes, but showed a gradient of OR type proportions likely reflecting species-specific amphibious preferences. Interestingly, freshwater turtles had by far the largest number of functional OR genes compared to those in other habitats, challenging the hypothesis that secondary adaptions to water may have reduced OR repertoires in amniotes. Our study provides novel results which shed new light on the relationship between chemical communication and habitat.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.