Expression characteristics of CsESA1 in citrus and analysis of its interacting protein.

Plant signaling & behavior Pub Date : 2025-12-01 Epub Date: 2024-12-23 DOI:10.1080/15592324.2024.2439249
Xiao He, Huiying Wang, Wei Wei, Ziyue Han, Jiaqi Zuo, Qing He
{"title":"Expression characteristics of <i>CsESA1</i> in citrus and analysis of its interacting protein.","authors":"Xiao He, Huiying Wang, Wei Wei, Ziyue Han, Jiaqi Zuo, Qing He","doi":"10.1080/15592324.2024.2439249","DOIUrl":null,"url":null,"abstract":"<p><p>The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by '<i>Candidatus Liberibacter</i> asiaticus' (<i>Ca</i>Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to <i>Ca</i>Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named <i>CsCESA1</i>. we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins. Subcellular localization in tobacco indicated that both CsCESA1 and CsEPS2 proteins are primarily located in the nucleus and cytoplasm. RT-qPCR analysis indicated that the expression levels of <i>CsCESA1</i> and <i>CsEPS2</i> were associated with variety tolerance, tissue site, and symptom development. Furthermore, we generated <i>CsCESA1</i> and <i>CsEPS2</i> silencing plants and obtained <i>CsCESA1</i> and <i>CsEPS2</i> silencing and overexpressing hairy roots. The analysis of hormone content and gene expression also showed that <i>CsCESA1</i> and <i>CsEPS2</i> are involved in transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. In conclusion, our results suggested that <i>CsCESA1</i> and <i>CsEPS2</i> could serve as potential resistance genes for HLB disease, offering insights into the plant's defense mechanisms against HLB.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2439249"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2439249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by 'Candidatus Liberibacter asiaticus' (CaLas). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to CaLas infection induction were screened, and one gene cloned with higher differential expression level was selected and named CsCESA1. we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins. Subcellular localization in tobacco indicated that both CsCESA1 and CsEPS2 proteins are primarily located in the nucleus and cytoplasm. RT-qPCR analysis indicated that the expression levels of CsCESA1 and CsEPS2 were associated with variety tolerance, tissue site, and symptom development. Furthermore, we generated CsCESA1 and CsEPS2 silencing plants and obtained CsCESA1 and CsEPS2 silencing and overexpressing hairy roots. The analysis of hormone content and gene expression also showed that CsCESA1 and CsEPS2 are involved in transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. In conclusion, our results suggested that CsCESA1 and CsEPS2 could serve as potential resistance genes for HLB disease, offering insights into the plant's defense mechanisms against HLB.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. Expression characteristics of CsESA1 in citrus and analysis of its interacting protein. Overexpression of ORP1C gene increases the rice resistance to Xanthomonas oryzae pv. oryzae through negatively regulating transcription activator-like effectors translocation. Aba-induced active stomatal closure in bulb scales of Lanzhou lily. The biochemical and molecular mechanisms of plants: a review on insect herbivory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1