CrossLabFit: A Novel Framework for Integrating Qualitative and Quantitative Data Across Multiple Labs for Model Calibration.

Rodolfo Blanco-Rodriguez, Tanya A Miura, Esteban Hernandez-Vargas
{"title":"CrossLabFit: A Novel Framework for Integrating Qualitative and Quantitative Data Across Multiple Labs for Model Calibration.","authors":"Rodolfo Blanco-Rodriguez, Tanya A Miura, Esteban Hernandez-Vargas","doi":"10.1101/2024.12.08.627398","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of computational models with experimental data is a cornerstone for gaining insight into biomedical applications. However, parameter fitting procedures often require a vast availability and frequency of data that are challenging to obtain from a single source. Here, we present a novel methodology \"CrossLabFit\" designed to integrate qualitative data from multiple laboratories, overcoming the constraints of single-lab data collection. Our approach harmonizes disparate qualitative assessments-ranging from different experimental labs to categorical observations-into a unified framework for parameter estimation. By using machine learning algorithms, these qualitative constraints are represented as dynamic \"qualitative windows\" that capture significant trends to which models must adhere. For numerical implementation, we developed a GPU-accelerated version of differential evolution to navigate in the cost function that integrated quantitative and qualitative data. We validate our approach across a series of case studies, demonstrating significant improvements in model accuracy and parameter identifiability. This work opens a new paradigm for collaborative science, enabling a methodological road to combine and compare findings between studies to improve our understanding of biological systems and beyond.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.08.627398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of computational models with experimental data is a cornerstone for gaining insight into biomedical applications. However, parameter fitting procedures often require a vast availability and frequency of data that are challenging to obtain from a single source. Here, we present a novel methodology "CrossLabFit" designed to integrate qualitative data from multiple laboratories, overcoming the constraints of single-lab data collection. Our approach harmonizes disparate qualitative assessments-ranging from different experimental labs to categorical observations-into a unified framework for parameter estimation. By using machine learning algorithms, these qualitative constraints are represented as dynamic "qualitative windows" that capture significant trends to which models must adhere. For numerical implementation, we developed a GPU-accelerated version of differential evolution to navigate in the cost function that integrated quantitative and qualitative data. We validate our approach across a series of case studies, demonstrating significant improvements in model accuracy and parameter identifiability. This work opens a new paradigm for collaborative science, enabling a methodological road to combine and compare findings between studies to improve our understanding of biological systems and beyond.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合多个实验室的定性和定量数据进行模型校准。
计算模型与实验数据的集成是深入了解生物医学应用的基石。然而,参数拟合过程通常需要大量的可用性和数据频率,而这些数据很难从单一来源获得。在这里,我们提出了一种新的方法,旨在整合来自多个实验室的定性数据,克服了单一实验室数据收集的限制。我们的方法协调了不同的定性评估-从专家注释到分类观察-到参数估计的统一框架。这些定性约束被表示为动态的“定性窗口”,它捕获了模型必须遵循的重要趋势。对于数值实现,我们开发了一个gpu加速版本的差分进化,以在集成定量和定性数据的残差中导航。我们通过一系列案例研究验证了我们的方法,证明了模型准确性和参数可识别性的显着改进。这项工作为协作科学开辟了新的途径,使一种方法能够结合和比较研究之间的发现,以提高我们对生物系统的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Loss of Exocytosis Protein DOC2B is an Early Event in Type 1 Diabetes Development. Identification and Regulation of a Hepatic Lipogenic Metabolon. Characterize Oral-to-Blood Microbial DNA Translocation in Individuals with Cocaine Use Disorder. Ultrasound-enhanced retinal delivery of engineered viral vectors. The Influence of Ligands on AlphaFold3 Prediction of Cryptic Pockets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1