Conversion of cropland monoculture to agroforestry increases methane uptake

IF 6.4 1区 农林科学 Q1 AGRONOMY Agronomy for Sustainable Development Pub Date : 2024-12-24 DOI:10.1007/s13593-024-00997-x
Guodong Shao, Guntars O. Martinson, Marife D. Corre, Jie Luo, Dan Niu, Edzo Veldkamp
{"title":"Conversion of cropland monoculture to agroforestry increases methane uptake","authors":"Guodong Shao, Guntars O. Martinson, Marife D. Corre, Jie Luo, Dan Niu, Edzo Veldkamp","doi":"10.1007/s13593-024-00997-x","DOIUrl":null,"url":null,"abstract":"<p>In temperate Europe, agroforestry practice is gaining interest due to its potential to enhance carbon (C) sequestration and mitigate greenhouse gas (GHG) emissions in agriculture. To date, the effects of agroforestry on the spatial and temporal dynamics of soil carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) fluxes are still poorly quantified. Here we present a systematic comparison of soil CO<sub>2</sub> and CH<sub>4</sub> fluxes between agroforestry and monoculture cropland systems for the first time, based on two-year field measurements at three sites on different soils in Germany. Each site had an adjacent alley cropping agroforestry system and monoculture, and the agroforestry was established on former monoculture croplands 1 to 11 years prior to this study. We found that area-weighted soil CO<sub>2</sub> emissions from agroforestry (3.5−8.1 Mg C ha<sup>−1</sup> yr<sup>−1</sup>) were comparable to monocultures (3.4−9.8 Mg C ha<sup>−1</sup> yr<sup>−1</sup>), whereas area-weighted agroforestry generally had higher soil CH<sub>4</sub> uptake (0.4−1.3 kg C ha<sup>−1</sup> yr<sup>−1</sup>) compared to monocultures (0.1−1.2 kg C ha<sup>−1</sup> yr<sup>−1</sup>). Seasonal variations of soil CO<sub>2</sub> and CH<sub>4</sub> fluxes were strongly regulated by soil temperature and moisture, and the spatial variations were influenced by soil texture. Our results suggest that conversion of monoculture cropland to long-term alley cropping agroforestry system could be considered as a sustainable agriculture practice for its great potential for mitigating CH<sub>4</sub> emissions.</p>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"65 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13593-024-00997-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In temperate Europe, agroforestry practice is gaining interest due to its potential to enhance carbon (C) sequestration and mitigate greenhouse gas (GHG) emissions in agriculture. To date, the effects of agroforestry on the spatial and temporal dynamics of soil carbon dioxide (CO2) and methane (CH4) fluxes are still poorly quantified. Here we present a systematic comparison of soil CO2 and CH4 fluxes between agroforestry and monoculture cropland systems for the first time, based on two-year field measurements at three sites on different soils in Germany. Each site had an adjacent alley cropping agroforestry system and monoculture, and the agroforestry was established on former monoculture croplands 1 to 11 years prior to this study. We found that area-weighted soil CO2 emissions from agroforestry (3.5−8.1 Mg C ha−1 yr−1) were comparable to monocultures (3.4−9.8 Mg C ha−1 yr−1), whereas area-weighted agroforestry generally had higher soil CH4 uptake (0.4−1.3 kg C ha−1 yr−1) compared to monocultures (0.1−1.2 kg C ha−1 yr−1). Seasonal variations of soil CO2 and CH4 fluxes were strongly regulated by soil temperature and moisture, and the spatial variations were influenced by soil texture. Our results suggest that conversion of monoculture cropland to long-term alley cropping agroforestry system could be considered as a sustainable agriculture practice for its great potential for mitigating CH4 emissions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy for Sustainable Development
Agronomy for Sustainable Development 农林科学-农艺学
CiteScore
10.70
自引率
8.20%
发文量
108
审稿时长
3 months
期刊介绍: Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences. ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels. Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.
期刊最新文献
Conversion of cropland monoculture to agroforestry increases methane uptake Restored legume acts as a “nurse” to facilitate plant compensatory growth and biomass production in mown grasslands Introducing intermediate wheatgrass as a perennial grain crop into farming systems: insights into the decision-making process of pioneer farmers Enhancing ecosystem services through direct-seeded rice in middle Indo-Gangetic Plains: a comparative study of different rice establishment practices Transitions to crop residue burning have multiple antecedents in Eastern India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1