Uncovering ZnS growth behavior and morphology control for high-performance aqueous Zn–S batteries

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2024-12-23 DOI:10.1039/d4sc07285e
Sibo Wang, Wanlong Wu, Quanwei Jiang, Chen Li, Hua-Yu Shi, Xiao-Xia Liu, Xiaoqi Sun
{"title":"Uncovering ZnS growth behavior and morphology control for high-performance aqueous Zn–S batteries","authors":"Sibo Wang, Wanlong Wu, Quanwei Jiang, Chen Li, Hua-Yu Shi, Xiao-Xia Liu, Xiaoqi Sun","doi":"10.1039/d4sc07285e","DOIUrl":null,"url":null,"abstract":"Aqueous Zn–S batteries provide competitive energy density for large-scale energy storage systems. However, the cathode active material exhibits poor electrical conductivity especially at the discharged state of ZnS. Its morphology generated in cells thus directly determines the cathode electrochemical activity. Here, we reveal the ZnS growth behavior and control its morphology by the anion donor number (DN) of zinc salts in electrolytes. The anion DN affects the salt dissociation degree and furthermore sulfide solubility in electrolytes, which finally determines ZnS growth preference on existing nuclei or carbon substrates. As a result, 3D ZnS is realized from the high DN ZnBr<small><sub>2</sub></small> electrolyte, whereas a 2D passivation film is formed from low DN Zn(TFSI)<small><sub>2</sub></small>. Thanks to the facile electron paths and abundant reaction sites with 3D morphology, the sulfur cathode reaches a high capacity of 1662 mA h g<small><sup>−1</sup></small> at 0.1 A g<small><sup>−1</sup></small> and retains 872 mA h g<small><sup>−1</sup></small> capacity after 400 cycles at 3 A g<small><sup>−1</sup></small>.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"23 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07285e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn–S batteries provide competitive energy density for large-scale energy storage systems. However, the cathode active material exhibits poor electrical conductivity especially at the discharged state of ZnS. Its morphology generated in cells thus directly determines the cathode electrochemical activity. Here, we reveal the ZnS growth behavior and control its morphology by the anion donor number (DN) of zinc salts in electrolytes. The anion DN affects the salt dissociation degree and furthermore sulfide solubility in electrolytes, which finally determines ZnS growth preference on existing nuclei or carbon substrates. As a result, 3D ZnS is realized from the high DN ZnBr2 electrolyte, whereas a 2D passivation film is formed from low DN Zn(TFSI)2. Thanks to the facile electron paths and abundant reaction sites with 3D morphology, the sulfur cathode reaches a high capacity of 1662 mA h g−1 at 0.1 A g−1 and retains 872 mA h g−1 capacity after 400 cycles at 3 A g−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Alkyl Bistriflimidate-Mediated Electrochemical Deaminative Functionalization Optimising reaction conditions in flasks for performances in organic light-emitting devices Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals Ionically conducting Li- and Na-phosphonates as organic electrode materials for rechargeable batteries Uncovering ZnS growth behavior and morphology control for high-performance aqueous Zn–S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1