{"title":"Emergent Canonical Spin Tensor in the Chiral-Symmetric Hot QCD","authors":"Matteo Buzzegoli, Andrea Palermo","doi":"10.1103/physrevlett.133.262301","DOIUrl":null,"url":null,"abstract":"The spin tensor is fundamental to relativistic spin hydrodynamics, but its definition is ambiguous due to the pseudogauge symmetry. We show that this ambiguity can be solved in interacting field theories. We prove that the mean-field limit of a modified Nambu-Jona-Lasinio model with spin-spin interactions is equivalent to nondissipative spin hydrodynamics with a canonical spin tensor. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"14 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.262301","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The spin tensor is fundamental to relativistic spin hydrodynamics, but its definition is ambiguous due to the pseudogauge symmetry. We show that this ambiguity can be solved in interacting field theories. We prove that the mean-field limit of a modified Nambu-Jona-Lasinio model with spin-spin interactions is equivalent to nondissipative spin hydrodynamics with a canonical spin tensor. Published by the American Physical Society2024
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks