Degradable and Chain Extendable Segmented Hyperbranched Copolymers by Wavelength-Selective Photoiniferter Polymerization Using a Trithiocarbonate-Derived Dimethacrylate
Yanwen Chen, Ruiming Wang, Xinxin Sheng, Li Zhang, Jianbo Tan
{"title":"Degradable and Chain Extendable Segmented Hyperbranched Copolymers by Wavelength-Selective Photoiniferter Polymerization Using a Trithiocarbonate-Derived Dimethacrylate","authors":"Yanwen Chen, Ruiming Wang, Xinxin Sheng, Li Zhang, Jianbo Tan","doi":"10.1021/acsmacrolett.4c00771","DOIUrl":null,"url":null,"abstract":"In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization. Switching to blue light irradiation allowed for the chain extension of poly(<i>N</i>,<i>N</i>-dimethylacrylamide) (PDMA) both at the branch points and at the chain ends. Finally, the formed segmented hyperbranched copolymers were explored as macromolecular chain transfer agents to prepare segmented hyperbranched block copolymer nanoparticles via polymerization-induced self-assembly. This study not only leads to new examples of degradable and chain extendable segmented hyperbranched polymers but also provides important insights into the formation of branched polymers via copolymerization of multivinyl monomers.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization. Switching to blue light irradiation allowed for the chain extension of poly(N,N-dimethylacrylamide) (PDMA) both at the branch points and at the chain ends. Finally, the formed segmented hyperbranched copolymers were explored as macromolecular chain transfer agents to prepare segmented hyperbranched block copolymer nanoparticles via polymerization-induced self-assembly. This study not only leads to new examples of degradable and chain extendable segmented hyperbranched polymers but also provides important insights into the formation of branched polymers via copolymerization of multivinyl monomers.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.