Making ultrahigh-strength dual-phase steels tough: experiment and simulation

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-12-24 DOI:10.1016/j.jmst.2024.11.033
Lang Liu, Jiazhen He, Liejun Li, Zhiyuan Liang, Zhengwu Peng, Jixiang Gao, Mingxin Huang, Zhichao Luo
{"title":"Making ultrahigh-strength dual-phase steels tough: experiment and simulation","authors":"Lang Liu, Jiazhen He, Liejun Li, Zhiyuan Liang, Zhengwu Peng, Jixiang Gao, Mingxin Huang, Zhichao Luo","doi":"10.1016/j.jmst.2024.11.033","DOIUrl":null,"url":null,"abstract":"The low damage resistance and fracture toughness hinder the widespread application of ultrahigh-strength dual phase (DP) steels. In this work, we propose a novel strategy to improve the fracture toughness of ultrahigh-strength DP steels by an order of magnitude without sacrificing the tensile strength. Six ultrahigh-strength DP steels with varying microstructure but comparable tensile strength (>1400 MPa) were prepared via tailoring the heat treatment process after cold rolling. Additionally, finite element (FE) method incorporated with Gurson-Tvergaad-Needleman (GTN) model and cohesive zone model (CZM) is established to simulate the fracture behaviour of DP steel. Twelve model DP steels with different ferrite sizes and F/M strength differences are constructed. The combined experiment and simulation results demonstrate that (i) ferrite/martensite (F/M) interface decohesion prevails in all steels, (ii) the ferrite morphology has a strong influence on the fracture toughness of ultrahigh-strength DP steels, (iii) the effects of matrix type, ferrite size, and F/M hardness difference on the fracture toughness are relatively weak, (iv) the exceptional high fracture toughness of plate-like DP steel can be attributed to the crack deflection, crack divider and crack arrester mechanisms induced by F/M interface decohesion.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"288 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.033","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The low damage resistance and fracture toughness hinder the widespread application of ultrahigh-strength dual phase (DP) steels. In this work, we propose a novel strategy to improve the fracture toughness of ultrahigh-strength DP steels by an order of magnitude without sacrificing the tensile strength. Six ultrahigh-strength DP steels with varying microstructure but comparable tensile strength (>1400 MPa) were prepared via tailoring the heat treatment process after cold rolling. Additionally, finite element (FE) method incorporated with Gurson-Tvergaad-Needleman (GTN) model and cohesive zone model (CZM) is established to simulate the fracture behaviour of DP steel. Twelve model DP steels with different ferrite sizes and F/M strength differences are constructed. The combined experiment and simulation results demonstrate that (i) ferrite/martensite (F/M) interface decohesion prevails in all steels, (ii) the ferrite morphology has a strong influence on the fracture toughness of ultrahigh-strength DP steels, (iii) the effects of matrix type, ferrite size, and F/M hardness difference on the fracture toughness are relatively weak, (iv) the exceptional high fracture toughness of plate-like DP steel can be attributed to the crack deflection, crack divider and crack arrester mechanisms induced by F/M interface decohesion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高超高强度双相钢韧性:实验与模拟
超高强度双相钢的抗损伤性和断裂韧性较低,阻碍了其广泛应用。在这项工作中,我们提出了一种新的策略,在不牺牲抗拉强度的情况下,将超高强度DP钢的断裂韧性提高一个数量级。通过冷轧后热处理工艺的调整,制备了6种显微组织不同但抗拉强度相近的超高强度DP钢(>1400 MPa)。建立了结合Gurson-Tvergaad-Needleman (GTN)模型和cohesive zone模型(CZM)的有限元方法来模拟DP钢的断裂行为。构建了12种具有不同铁素体尺寸和F/M强度差异的DP钢模型。实验与模拟相结合的结果表明:(1)铁素体/马氏体(F/M)界面脱黏现象在所有钢中普遍存在;(2)铁素体形貌对超高强度DP钢的断裂韧性有较强的影响;(3)基体类型、铁素体尺寸和F/M硬度差对断裂韧性的影响相对较弱;(4)类板DP钢的高断裂韧性可归因于裂纹偏转。F/M界面脱黏诱导的裂纹分割器和裂纹止裂机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Enhancing thermal conductivity in polysiloxane composites through synergistic design of liquid crystals and boron nitride nanosheets Controllable growth of wafer-scale two-dimensional PdS2xSe2(1-x) nanofilms with fully tunable compositions for high-performance photodetectors Unexpected Young's modulus dependence of refractory solute diffusion in NiCoFeCr-based high entropy alloys Hybrid heat-source solid-state additive manufacturing: A method to fabricate high performance AA6061 deposition Microstructural effects on shock-induced deformation behavior in CoCrNi medium-entropy alloy: A molecular dynamics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1