Explainable XceptionNet-Based Keratoconus Detection Using Infrared Images and Edge Computing

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-12-02 DOI:10.1109/LSENS.2024.3509503
Krushna Devkar;Arunkumar S;Tithi Bhakta;Shrikant R. Bharadwaj;Nithyanandan Kanagaraj;Nagarajan Ganapathy
{"title":"Explainable XceptionNet-Based Keratoconus Detection Using Infrared Images and Edge Computing","authors":"Krushna Devkar;Arunkumar S;Tithi Bhakta;Shrikant R. Bharadwaj;Nithyanandan Kanagaraj;Nagarajan Ganapathy","doi":"10.1109/LSENS.2024.3509503","DOIUrl":null,"url":null,"abstract":"Keratoconus is a progressive eye disease affecting the cornea, potentially leading to vision impairment. Early detection is crucial to prevent long-term damage. Artificial intelligence (AI) with edge computing can significantly aid in the early diagnosis of keratoconus by reducing the computation time and increasing diagnostic accuracy. In this letter, we utilize a customized explainable Xception network for keratoconus detection. For this clinical infrared (IR) images are obtained from hospital under defined protocol. The IR images are preprocessed and pupil regions are extracted. The extracted regions are applied to XceptionNet, and integrated gradient-weighted class activation maps (GradCAM) are obtained. Experiment are performed to evaluate the performance of the network. Results show that the proposed approach is able to detect keratoconus images. The proposed approach yielded the average accuracy of 85%. GradCAM outcomes show that the trained model detected the regions similar to clinical interpretation. We assess the model's performance on an edge device, demonstrating its potential for real-time, on-site diagnostics. This application not only improves classification accuracy but also enhances interpretability, thereby assisting ophthalmologists in making informed decisions with greater confidence. Thus, the proposed architecture could be useful in clinical condition.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 1","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772051/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Keratoconus is a progressive eye disease affecting the cornea, potentially leading to vision impairment. Early detection is crucial to prevent long-term damage. Artificial intelligence (AI) with edge computing can significantly aid in the early diagnosis of keratoconus by reducing the computation time and increasing diagnostic accuracy. In this letter, we utilize a customized explainable Xception network for keratoconus detection. For this clinical infrared (IR) images are obtained from hospital under defined protocol. The IR images are preprocessed and pupil regions are extracted. The extracted regions are applied to XceptionNet, and integrated gradient-weighted class activation maps (GradCAM) are obtained. Experiment are performed to evaluate the performance of the network. Results show that the proposed approach is able to detect keratoconus images. The proposed approach yielded the average accuracy of 85%. GradCAM outcomes show that the trained model detected the regions similar to clinical interpretation. We assess the model's performance on an edge device, demonstrating its potential for real-time, on-site diagnostics. This application not only improves classification accuracy but also enhances interpretability, thereby assisting ophthalmologists in making informed decisions with greater confidence. Thus, the proposed architecture could be useful in clinical condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可解释的xceptionnet的圆锥角膜检测,利用红外图像和边缘计算
圆锥角膜是一种影响角膜的进行性眼病,可能导致视力损害。早期发现对于防止长期损害至关重要。具有边缘计算的人工智能(AI)可以通过减少计算时间和提高诊断准确性来显著帮助圆锥角膜的早期诊断。在这封信中,我们利用一个定制的可解释的异常网络来检测圆锥角膜。为此,临床红外(IR)图像是在规定的协议下从医院获得的。对红外图像进行预处理,提取瞳孔区域。将提取的区域应用到XceptionNet中,得到综合梯度加权类激活图(GradCAM)。通过实验对网络的性能进行了评价。结果表明,该方法能够检测出圆锥角膜图像。该方法的平均准确率为85%。GradCAM结果表明,训练后的模型检测到与临床解释相似的区域。我们评估了该模型在边缘设备上的性能,展示了其实时现场诊断的潜力。这种应用不仅提高了分类的准确性,而且提高了可解释性,从而帮助眼科医生更有信心地做出明智的决定。因此,所提出的结构在临床条件下是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1